
Astronomy 345 Circumstellar Matter II
Problems 2012 (with solutions)

Answers to some numerical problems are shown in curly brackets. Solutions are shown
immediately after their questions (which are in smaller type), with a horizontal line sepa-
rating each problem.

speed of light c 2.998× 108 m s−1

gravitational constant G 6.673× 10−11 N m2 kg−2

Planck constant h 6.626× 10−34 J s
Boltzmann constant k 1.381× 10−23 J K−1

Stefan-Boltzmann constant σ 5.671× 10−8 W m−2 K−4

gas constant R 8.315 J mol−1 K−1

proton mass mp 1.673× 10−27 kg
electron mass me 9.109× 10−31 kg

astronomical unit AU 1.496× 1011 m

Earth radius R⊕ 6.371× 106 m
solar mass M� 1.989× 1030 kg
solar radius R� 6.960× 108 m
solar luminosity L� 3.826× 1026 W

Thomson cross section σT 6.652× 10−29 m2

plasma conduction constant κ0 1.2× 10−12 W m−1 K−7/2

1) Show that the atmosphere of a star in isothermal hydrostatic equilibrium has a number density profile
of the form

n(r) = n0 exp
(
−a

[
1−

r0

r

])
,

where n0 is the number density at a radius r0, and a is a constant. Derive an expression for a in terms
of the star’s atmospheric temperature and mass.

Solution to (1): Use
d p
dr
= −

nmpG M�
r2 and p = 2nkT .

Noting that T is constant, write as

dn
dr
= −

G M�mp

2kT
n
r2 = −α

n
r2 .
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Integrating: ∫ n

n0

dn
n
= −α

∫ r

r0

dr
r2

ln
n
n0
= −α

(
1
r0
−

1
r

)
n = n0 exp

[
−
α

r0

(
1−

r0

r

)]
i.e., a =

α

r0
=

G M�mp

2kT r0
.

2) The lower solar corona can be modelled as being in isothermal hydrostatic equilibrium at a temperature
T , although the model breaks down at large distances from the Sun.

(a) Show that for radial distances r = R� + z, where R� is the radius of the Sun, the number
density of protons is

n(r) ' n0 exp(−z/h) , where h =
2kT R2

�

G M�mp
, and z � R� ,

just as in a plane stratified isothermal atmosphere.

(b) Using this approximation for n(z), show that the optical depth of the corona due to Thomson
scattering is τs ' n0hσT, where σT is the Thomson scattering cross section. Calculate τs
assuming T = 1.5× 106 K and n0 = 1015 m−3.∗

(c) Combine the results above to show that the volume emission measure,
∫

vol n2 dV , of the corona
above r = R� is approximately 2πn2

0 R2
�h. (You may assume that

∫
∞

a xbe−x dx ' abe−a

for a � 1.)

Solution to (2):

(a) From the previous question, n(r) = n0 exp [−a(1− r0/r)]. If r = R�+ z, then 1−
r0/r = 1− R�/(R�+ z) ' z/R�. i.e., n(r) ' n0 exp(−az/R�) = n0 exp(−z/h)
where

h =
R�
a
=

2kT R2
�

G M�mp
= 9.03× 107 m.

(b) τ =
∫
∞

R�
n(r)σT dr =

∫
∞

0 n0σTe−z/h dz = n0σTh = 6.01× 10−6

(c) From the definition of volume emission measure (VEM) and from the above, define

∗Because we see the corona in scattered light, this value of τs is roughly the ratio of the surface brightness
of the corona as seen during an eclipse to the normal surface brightness of the photosphere.
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x = r/R� and y = 2R�x/h:

VEM = 4π
∫
∞

R�
n2

0 exp
[
−2(r − R�)/h

]
r2 dr

= 4πn2
0 R3
�

∫
∞

1
exp

[
−2R�(x − 1)/h

]
x2 dx

= 4πn2
0 R3
�e2R�/h

∫
∞

1
e−2R�x/hx2 dx

= 4πn2
0 R3
�e2R�/h

∫
∞

2R�/h
e−y h3

8R3
�

y2 dy

'
πn2

0
2

h3
(

2R�
h

)2

= 2πn2
oh R2

�

3) The Chapman model for a hydrostatic corona assumes that thermal conduction is the dominant heat
loss mechanism from the plasma, giving it a temperature profile T (r) ∝ r−2/7. Use the equation
of hydrostatic equilibrium to show that the number density profile in this atmosphere, n(r), has the
form

n(r)
n0
=

(
r
r0

)2/7

exp
{(

7
10

G M∗mp

kT0r0

)[(r0

r

)5/7
− 1

]}
,

where the subscript ‘0’ denotes the value of a parameter at a distance r0 from the centre of the star.

Solution to (3):
d p
dr
= −nmp

G M∗
r2 ; p = 2nkT

so 2k
d
dr
(nT ) = −

G M∗mpn
r2 .

If T (r) ∝ r−2/7,
T
T0
=

(r0

r

)2/7

so
d
dr

( n
r2/7

)
= −

G M∗nmp

2kT0r2/7
0

1
r2 ,

i.e.,
r2/7

n
d
dr

( n
r2/7

)
= −

G M∗mp

2kT0r2/7
0

r−12/7

ln
( n

r2/7

)
=

7
10

G M∗mp

kT0r2/7
0

r−5/7
+ const.

i.e.,
n(r)
n0
=

(
r
r0

)2/7

exp
{(

7
10

G M∗mp

kT0r0

)[(r0

r

)5/7
− 1

]}

4) Show that for the Sun, the hydrostatic expression for n(r) derived above for the Chapman model,
has a maximum at

rmax = R�

(
7G M�mp

4kT0 R�

)7/5

,
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and calculate this value of rmax assuming the corona has a base temperature of T0 = 1.5× 106 K.

Solution to (4): Putting x = r/R� and α = G M�mp/(kT R�), n(r) has the form

n(x) = n0x2/7 exp
[

7
10
α(x−5/7

− 1)
]
,

so
dn
dx
=

2
7

n0x−5/7e[·]
− n0x2/7 7α

10
5
7

x−12/7e[·]

=
n0

2
x−10/7e[·]

(
4
7

x5/7
− α

)
.

When
dn
dx
= 0, xmax =

rmax

R�
=

(
7
4
α

)7/5

=

(
7G M�mp

4kT R�

)7/5

.

If T0 = 1.5× 106 K then rmax = 101R� = 7.01× 1010 m.

5) Use the Parker model for the velocity profile of an isothermal, pressure driven wind, together with
the equation of mass conservation, to show that the number density profile in the wind, n(r) satisfies

[
nc

n(r)

]2 (rc

r

)4
− ln

[
nc

n(r)

]2

= 4
rc

r
− 3 .

Solution to (5):

Given
v2

v2
c
− 2 ln

v

vc
= 4

rc

r
+ 4 ln

r
rc
− 3,

and mass continuity: nvr2
= const.,

we get
(nc

n

)2 (rc

r

)4
− 2 ln

nc

n
= 4

rc

r
− 3

i.e.,
[

nc

n(r)

]2 (rc

r

)4
− ln

[
nc

n(r)

]2

= 4
rc

r
− 3

6) Determine the velocity gradient, dv/ dr , in the solar wind at the critical (sonic) point of the Parker
model, assuming that the wind velocity follows the critical solution, i.e., that the velocity equals the
sound speed at the critical point, and l’Hôpital’s rule: If f (a) = g(a) = 0, then

lim
x→a

f (x)
g(x)

=
f ′(a)
g′(a)

.
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Solution to (6): The parker model gives

1
v

dv
dr
=

2c2

r

(
1− rc

r

)
v2 − c2

i.e.,
r2

2c2v

dv
dr
=

r − rc

v2 − c2 =
f
g
.

f ′ = 1, g′ = 2v
dv
dr
, so at v = c,

f
g
=

f ′

g′
=

1
2cv′

.

So at rc,
r2

c v
′

2c3 =
1

2cv′
,

v′ = ±
c
rc
= ±

2c3

G M∗

7) The masses, M , luminosities, L , and radii, R, of massive main sequence stars are related to their
solar values by by

R
R�
=

M
M�
;

L
L�
=

(
M

M�

)4

.

Show that radiatively driven winds, comprising particles of mean (photon) cross-section σ and mass
m, will occur in stars of mass M ≥ Mmin, where

Mmin

M�
=

(
4πG M�mc
σ L�

)1/3

.

Calculate Mmin/M� when σ = σT and m = mp.

Show also that the terminal wind speed from these massive stars is

v∞ = v0

(
M

M�

)3/2
[

1−
(

Mmin

M

)3
]1/2

, where v0 =

(
σ L�

2πmcR�

)1/2

.

Again, calculate v∞ when σ = σT and m = mp.

Solution to (7): Critical luminosity, Lc = 4πG Mmc/σ , where M is the particle mass
and σ is its radiation cross-section. Radiatively driven winds require L ≥ Lc, i.e.,

L
L�
≥

4πGmc
σ

M
M�

M�
L�

.

But L/L� = (M/M�)4 so (
M

M�

)4

≥ 4πG
M

M�

M�
L�

mc
σ

i.e., M ≥ Mmin = M�

(
4πG M�mc
σ L�

)1/3
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Putting σ = σT and m = mp, Mmin/M� = 31.7.

If v∞ =

[
(L − Lc)σ

2πRmc

]1/2

; v2
0 =

σ L�
2πmcR�

thenv∞ = v0

[(
L

L�
−

Lc

L�

)
R�
R

]1/2

= v0

[{(
M

M�

)4

−
4πG Mmc
σ L�

}
M�
M

]1/2

= v0

(
M

M�

)3/2
[

1−
4πG M�mc
σ L�

(
M�
M

)3
]1/2

= v0

(
M

M�

)3/2
[

1−
(

Mmin

M

)3
]1/2

= 3.46 km s−1

8) Given the mean solar wind speed at 1 AU is about 350 km s−1, and its mean proton number density is
about 3 cm−3, compare the dynamic (ram) pressure of the solar wind at this distance with the photon
pressure. Estimate the force each exerts on the Earth.

Solution to (8): At 1 AU, the solar wind momentum density is nmpv, so the momentum
flux (i.e., pressure) = nmpv

2
' 6× 10−10 Pa.

For the photon pressure, assume all photons are emitted at an angular frequency ω. The
solar luminosity, L� = nh̄ω, where n is the number of photons emitted by the Sun per
unit time. The photon flux at R is therefore

Fn =
n

4πR2 =
L�
h̄ω

1
4πR2 .

The momentum of each photon = h̄k = h̄ω/c, so the photon pressure is

P =
h̄ω
c

L�
h̄ω

1
4πR2

=
L�
c

1
4πR2 ' 4.5× 10−6 Pa.

The ratio of photon:wind ram pressures = nmpv
2c4πR2/L� ' 7 500.

The cross-section of the Earth= πR2
⊕ ' 1.3× 1014 m2, so photon force∼ 6× 108 N,

and solar wind force ∼ 8× 105 N.

9) A star has a continuous Planck spectrum at frequencies up to the Lyman continuum limit of hydro-
gen, and is very weak at higher frequencies due to opacity effects. Hydrogen atoms in the stellar
atmosphere are accelerated radiatively by absorbing stellar continuum radiation in their Lyman-α
line. By considering the Doppler shift of the radiation absorbed show that, no matter how luminous
the star, the terminal speed of the stellar wind cannot exceed c/4. (Neglect relativistic effects.)
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Solution to (9): Use the Rydberg equation,

1
λ
= R

(
1
n2

1
−

1
n2

2

)
=
νn

c
.

For the Lyman series, n1 = 1.

Lyman limit: ν∞ = Rc(1− 0) = Rc
Lyman alpha: να = Rc(1− 1/4) = 3Rc/4.

Combining the above, να/ν∞ = 3/4. As atoms accelerate away from the star, the emission
spectrum, Fν , appears redshifted. Once the highest frequency, ν∞, is shifted below the
absorption frequency, να, there can be no further absorption and therefore no further
acceleration of the wind. This occurs at a wind speed of

v = c
1ν

ν
=

c(ν∞ − να)
ν∞

= c
(

1−
να

ν∞

)
=

c
4
.

10) (Exam’98) What are the major assumptions behind the Parker model for the solar wind? [4]

The critical solution for this model has the form

v2

c2 − 2 ln
v

c
= 4 ln

r
rc
+ 4

rc

r
− 3

where v is the wind speed at a radial distance r , c = (2kT/mp)
1/2 is the isothermal sound speed and

rc = G M�/(2c2) is the critical point. Show that if r � rc, then the wind speed is approximately

v ' 2c
√

ln(r/rc),

increasing by only about 30 percent between 20 and 1000 AU. (You may assume the temperature of
the wind is 6× 105 K.) [6]

Assuming a constant mass loss rate from the Sun, show that the dynamical pressure of the wind (i.e.,
the wind momentum flowing through unit area in unit time) at large (∼ 100 AU) distances from the
Sun is

P(r) =
r2

0 n0v0mpv(r)
r2 '

10−9

(r/r0)2
pascal,

where r0 and v0 are values taken at 1 AU, and the proton number density at 1 AU, n0 = 3× 106 m−3. [5]

It is assumed that the solar wind extends to the point where this dynamical pressure equals the
hydrostatic pressure of the interstellar medium. Given the proton number density in the interstellar
medium is about 5 × 105 m−3 and that its temperature is about 8 000 K, estimate the extent of the
solar wind in AU. [5]
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Solution to (10): Assumptions behind the Parker wind model: isotropic isothermal
corona/wind. Wind driven by thermal pressure alone (no photon pressure). Using the
given equation for the velocity profile, set r � rc and v � c (i.e., supersonic). The
equation reduces to v2/c2

' 4 ln(r/rc), so v ' 2c [ln(r/rc)]1/2.

c = (2kT/mp)
1/2
= (2× 1.38× 10−23

× 6× 105/1.67× 10−27)1/2

= 9.96× 104
' 105 m s−1.

rc = G M�/(2c2) = 6.67× 10−11
× 2× 1030/2× 1010

= 6.67× 109 m

hence v20 AU = 2× 105
[

ln
(

20× 1.5× 1011

6.67× 109

)]1/2

= 494 km s−1

v1000 AU = 2× 105
[

ln
(

103
× 1.5× 1011

6.67× 109

)]1/2

= 633 km s−1

The fractional change from 20 to 1 000 AU= 633
494 = 1.28, i.e., about a 30 percent increase.

A constant mass loss rate implies

nvr2
= constant = n0v0r2

0

Momentum flux = P = (nmpv)v = mpn0v0r2
0v/r2.

v0 ' 2c [ln(r0/r)]1/2
= 353 km s−1.

n0 = 3× 106 m−3, v ' (494+ 633)/2 = 564 km s−1.

Therefore P ∼ 1.6× 10−27
× 3× 106

× 353× 103
× 564× 103

× (r0/r)2 ∼ 10−9/(r/r0)
2 Pa.

Take PISM = 2nISMkTISM = 2× 5× 105
× 1.38× 10−23

× 8 000 ' 1.1× 10−13 Pa.
Equating to P we get r/r0 = 95, i.e., r ' 95 AU.

11) (Exam’98) Describe how stellar winds can be driven by

(a) gas pressure from a hot corona [4]

(b) radiation pressure. [4]

How do the stellar mass loss rates compare for these two mechanisms? [2]
Neglecting photon pressure, show that a star cannot maintain a hydrostatic atmosphere unless the
atmospheric temperature decreases with radial distance, r , from the star faster than T (r) ∝ r−1. [7]
Explain how, in principle, confinement by the interstellar medium could relax this condition. [3]

Solution to (11): solution from notes.

12) (Exam’00) Describe how the radiation pressure on a dust particle gives rise to the concept of the
Eddington Limiting Luminosity of a star, stating any assumptions you make. Briefly extend this
description to line driven winds, qualitatively outlining the principles behind P Cygni profiles. [10]
Show that, for a dust-driven wind, the wind velocity profile, v(r), varies as

v
dv
dr
=

G M
r2 (0 − 1),
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at distances, r , well away from a star of mass M , where 0 is the ratio of the stellar luminosity to the
Eddington luminosity. [6]

Hence derive the explicit velocity profile of the wind, and show that the terminal velocity at infinite
distance is

v∞ = vesc
√
0 − 1,

where vesc is the escape velocity from the surface of the star. [6]

Qualitatively, how is this analysis modified at distances of just a few stellar radii form the star? [2]

An asymptotic giant branch star has a luminosity of 3 × 104 L� and a terminal wind speed of
30 km s−1. Estimate the maximum mass loss rate from this star in M� yr−1, assuming each photon
emitted transfers all its momentum to a dust particle. [4]

Why might winds of this sort be confined to the envelopes of cool stars? [4]

Solution to (12):

13) (Exam’00) Describe the structure of the outer regions of the Sun beyond the photosphere, including
a careful account of the temperature profile and possible heating sources for the corona. Explain
further how the magnetic field and rotation of the Sun influences the flow of the solar wind. [10]

Solution to (13):

14) (Exam’00) State the underlying assumptions behind the Parker Model of the solar wind, and show
how mass continuity relates the number density, n(r), and the speed, v(r), of a the wind at a radial
distance r from the Sun. [5]

The Parker solutions have the form

v2

c2 − 2 ln
v

c
= 4 ln

r
rc
+ 4

rc

r
+ constant,

where c is the sound speed and rc the critical radius. Sketch the plots of v/c versus r/rc for various
values of the constant in the equation, and identify the value of the constant for the critical solution,
applicable to the solar wind. [3]

What are the important properties of this solution? [3]

Solution to (14):

15) (Exam’00) Distinguish between pressure driven stellar winds, such as the solar wind, and line driven
winds seen in high mass-loss rate stars. [6]

The Sun loses mass at a rate of about 1.8×109 kg s−1. Given that the mean solar wind speed at 1 AU
is 400 km s−1, estimate the ratio of the solar wind ram pressure to the photon pressure on the surface
of the Moon facing the Sun. Why would the value on the surface of the Earth be different? [8]

By considering the wavelengths of light scattered out of and into the line-of-sight to a star by its stellar
wind, carefully explain how a spherically symmetric line driven wind with strong resonant scattering
will show the line with a P-Cygni profile. Include in your account how the line profile is affected by
the maximum expansion speed of the wind, v∞. You may assume that the wind is optically thick at
its resonant frequency and that the wind speed gradually increases with radial distance to its limiting
value. [12]

Deduce how the profile would be affected by

(a) The finite size of the star [2]

(b) The decreasing optical thickness of the outer wind. [2]
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Solution to (15):

16) (Class Test’00) Show that, in certain circumstances, the force due to radiation pressure on a particle
a distance r from a star of luminosity L is

F =
Lσ

4π2c
,

where c is the speed of light and σ is the effective cross section of the particle to radiation. Make all
your assumptions clear. [4]

Using this model, determine the critical luminosity, Lc, of a star for dust grains of mass m, and
describe the motion of these grains for L > Lc and L < Lc. [4]

Qualitatively, how is their behaviour modified at distances comparable with the stellar radius? [2]

Solution to (16):

17) (Exam’02) How do we know that the Sun has

(a) a corona, at a temperature of about 106 K? [2]

(b) a wind, with a speed of about 350 km s−1? [2]

Neglecting radiation pressure, show the temperature, T , and electron number density, n, of a perfect
gas of ionised hydrogen in (spherically symmetric) hydrostatic equilibrium around a star of mass M
obeys

d
dr
(2nkT ) = −

G Mmpn
r2 ,

where r is the radial distance from the centre of the star, mp is the mass of a proton, k is Boltzmann’s
constant and G the gravitational constant. [5]

Go on to show that, for an isolated star, the temperature must decrease with radius faster than 1/r
for equilibrium to be possible. [6]

In the Chapman model of the Sun’s corona, a slower fall-off (T ∝ r−2/7) is predicted. Outline the
distinguishing physical feature of this model. [3]

Show that, close in to the Sun (r ' r0, where r0 is the solar radius), the pressure in such an atmosphere
falls off exponentially, but far from the Sun it approaches a limiting value of

P = P0 exp
(
−

7G Mmp

10kT0r0

)
,

where P0 and T0 are the pressure and temperature a distance r0 from the Sun. [12]

Solution to (17):

18)HARD Above its maximum value at a temperature T0, the radiative loss function f (T ) dominant in the
upper chromosphere of the Sun can be approximated by

f (T ) = f0

(
T0

T
+

T
αT0

)
.

A plasma in this region has a fixed number density, n, and is in thermal equilibrium at a temperature
just below T0. It suffers a radiative loss per unit volume n2 f (T0), balancing a heat input of Cn per
unit volume. Show that if this equilibrium is disturbed to a slightly higher temperature, the eventual
stable equilibrium temperature is αT0.
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By considering the energy balance equation in the plasma,

2nk
dT
dt
= Cn − n2 f (T )

show also that the time taken to reach this new equilibrium temperature (with steady heating) is

t =
2αkT0

n f0

∫ α

1

y dy
(y − 1)(α − y)

.

Solution to (18): The radiative transfer function, f (T ), has the same value at T0 and the
higher temperature, T . It is in stable equilibrium at T . i.e.,

f0

(
T0

T
+

T
αT0

)
= f0

(
1+

1
α

)
T 2
− T0(α + 1)T + αT 2

0 = 0
T = αT0, T0.

Considering the energy balance:

2nkT
dT
dt
= Cn − n2 f (T ) = Cn − n2 f0

(
T0

T
+

T
αT0

)
.

At T0, 0 = Cn − n2 f0(1+ 1/α),
so that C = n f0(1+ 1/α).

i.e.,
dT
dt
=

n f0

2kα
(α + 1)−

n f0

2k

(
T0

T
+

T
αT0

)
.

Putting a =
n f0(α + 1)

2kα
; b =

n f0

2k
; y =

T
T0

We get T0
dy
dt
= a − b

(
1
y
+

y
α

)
t = T0

∫ α

1

y dy
ay − b − by2/α

.

Using aα/b = α + 1

we get t =
T0α2k

n f0

∫ α

1

y dy
(1+ α)y − α − y2 =

2αkT0

n f0

∫ α

1

y dy
(y − 1)(α − y)

.

G.W.
2012
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