
IOR1: radio telescopes

The radiometer equation – a more careful look
In the lectures we derive the equation

SNR = 𝑇A
𝑇sys

(𝛥𝜈𝜏)1/2 , (1)

sometimes called the radiometer equation, to determine
the signal-to-noise ratio from a source generating an an-
tenna temperature 𝑇A using a telescope with a system
temperature𝑇sys, a bandwidth 𝛿𝜈 and an integration time
𝜏. Although this result is rigorously correct we made a
couple of hand-wavy approximations along the way, so
here we’ll do it more carefully.

A radio source (and any other contributing noise
source) will generate a randomly fluctuating voltage 𝑢(𝑡)
at the antennawhichwewill assumehas a gaussian prob-
ability distribution with a standard deviation 𝜎 and a
mean of zero, so that the probability density for 𝑢 is

𝑝(𝑢) = 1
(2π)1/2𝜎 exp (

−𝑢2
2𝜎2 ) . (2)

Our radio telescope system generates a signal 𝑉(𝑡), pro-
portional to [𝑢(𝑡)]2, which we use as our estimator for
the noise power. If the signal from the source is the only
noise present, then the mean of 𝑉 is proportional to the
source’s flux density. If there are other noise sources
present then only part of 𝑉 will be from the source. The
pdf of 𝑉 is one-sided (𝑉 ≥ 0), and is related to 𝑝(𝑢) by

𝑝(𝑉) |d𝑉| = 2𝑝(𝑢) |d𝑢| (𝑉 ≥ 0). (3)

Using
d𝑉 = 2𝑢 d𝑢, (4)

we can write

𝑝(𝑉) = 𝑉−1/2

(2π)1/2𝜎 exp (
−𝑉2

2𝜎2 ) . (5)

This is known as a chisquared distributionwith one degree
of freedom, and has a mean of

⟨𝑉⟩ = ∫
∞

0
𝑉𝑝(𝑉) d𝑉 = 𝜎2, (6)

and a variance of

var[𝑉] = ⟨𝑉2⟩ − ⟨𝑉⟩2 (7)

= ∫
∞

0
𝑉2𝑝(𝑉) d𝑉 − 𝜎4 (8)

= 2𝜎4. (9)

The standard deviation of 𝑉 is therefore√2𝜎2, or√2⟨𝑉⟩.
If the random signal is the only ‘noise’ in the system, then
the signal-to-noise ratio is simply

SNR = ⟨𝑉⟩
[var(𝑉)]1/2 =

1
√2

. (10)

In the lectures we use a plausibility argument to say that
this signal-to-noise ratio is ‘≃ 1’, but the result above is
more rigorous. If other noise sources are present things
are a littlemore complicated, but the basic argument still
holds. The signal will now be represented by the power
from just the source, proportional to the antenna temper-
ature 𝑇A, and the total noise power by the system temper-
ature 𝑇sys, so that

SNR = 𝑇A
𝑇sys√2

. (11)

We can now consider how to improve this signal-to-noise
ratio by integrating (averaging) the sample values of 𝑉
over some interval of time 𝜏. Let there be 𝑁 samples of
𝑉 (or 𝑢) in time 𝜏. If the samples are statistically inde-
pendent, and 𝑁 ≫ 1, then (by definition) the standard
deviation of the average is√𝑁 less than that of a sample
signal-to-noise ratio, i.e.,

SNR = 𝑇A
𝑇sys√2

√𝑁. (12)

Samples 𝑢𝑖 and 𝑢𝑗 will be independent if
⟨𝑢𝑖𝑢𝑗⟩ = ⟨𝑢2⟩𝛿𝑖𝑗, (13)

i.e., if the autocorrelation of 𝑢 is a delta function at the
origin. This corresponds (by the Wiener–Khinchin theo-
rem) to a white (‘flat’) power spectrum for the noise. The
Nyquist sampling theorem tells us that a sampling inter-
val of 𝜏/𝑁 corresponds to a bandwidth of 𝛥𝜈 where

𝛥𝜈 = 1
2
𝑁
𝜏 , (14)

so
𝑁 = 2𝛥𝜈𝜏, (15)

(in the lectures we say that ‘𝑁 ≃ 𝛥𝜈𝜏’), and therefore our
final signal-to-noise ratio is

SNR = 𝑇A
𝑇sys21/2

(2𝛥𝜈𝜏)1/2 = 𝑇A
𝑇sys

(𝛥𝜈𝜏)1/2 . (16)

Note that the two factors of √2 introduced by our more
careful analysis cancel out, so the precise and ‘approxi-
mate’ results are the same.
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