## Pulsars and Supernovae II

#### 5. DISTRIBUTIONS AND POPULATIONS

P-PDOT plane
characteristic age
death line
galactic distribution
parallax
Crab and Vela pulsars
millisecond pulsars
binary pulsars

### The P-Pdot diagram

 By timing pulsars individually, one can measure the variation in period with time. This is usually expressed as a Taylor series:

$$P(t) = P(t_0) + \frac{dP}{dt} \bigg|_{t_0} (t - t_0) + \frac{d^2 P}{dt^2} \bigg|_{t_0} \frac{(t - t_0)^2}{2!} + \dots$$

- The first two coefficients are known as P and  $Pdot(\dot{P})$  the fitted period and period derivative of the pulsar.
- Higher coefficients are always much smaller and are often dominated by the pulsar's timing noise.
- P and Pdot together give a good indication of the age, magnetic field and luminosity of the pulsar, and a scatter diagram of all known pulsars in the P-Pdot plane is useful in identifying types of pulsars, and constraining radiation mechanisms.



5. Distributions and populations

# The P-Pdot diagram

• Age:

$$\tau \propto P/\dot{P}$$

Magnetic field:

$$B \propto \left(\dot{P}P\right)^{1/2}$$

• Spin-down luminosity:  $L \propto \dot{P}/P^3$ 



# The P-Pdot diagram



## Characteristic age

 We characterise the spin-down of a pulsar in terms of its braking index (see first lecture)

$$\frac{\mathrm{d}\nu}{\mathrm{d}t} (= \dot{\nu}) \propto -\nu^n$$

with n=3 for magnetic dipole braking. Expressing this in terms of pulsar period, and integrating from some initial period  $P_0$  to its present value after time T gives

$$T = \frac{P}{(n-1)\dot{P}} \left[ 1 - \left(\frac{P_0}{P}\right)^{n-1} \right].$$

• If  $P_0 \ll P$  and n=3 we get the characteristic age of the pulsar to be

$$\tau_c = \frac{P}{2\dot{P}}$$

#### Death line

- There is a clear absence of pulsars in the lower right of the P-Pdot diagram, to the left of the Death line.
- This may be indicating that the pulsar mechanism can't fire-up if the field strengths are too low.
- The rotating magnetised neutron star is expected to generate a strong electric field that accelerates particles and generates more particles by a cascade mechanism (see later lectures).
- Neutron stars below the death line may have too little rotation and/or magnetic field to kick this cascade mechanism off, but it is not a precise boundary.



### Galactic distribution

• Our current sample of pulsars shows strong selection effects, reflecting the difficulty of detecting pulsars at great distances:



### Galactic distribution

 Most pulsars, like most stars, are in the galactic plane, but with a high velocity dispersion (up to 1000 km/s). Perhaps half have galactic escape velocities



### Annual parallax

- How distant are pulsars?
  - DM is only a useful indicator once you know the electron density structure in the galaxy!

 Accurate pulsar timing can reveal the curvature of the wavefronts from a nearby pulsar:



### The Crab pulsar and the Vela pulsars

 Two pulsars deserve particular attention -- the Crab and Vela pulsars are young, with high spindown rates, associated supernova remnants and optical, X and gamma ray pulses:



Vela pulsar (PSR B0833-45)

P: 89 ms

Pdot: 10 ns/day

Characteristic age: 12180 y



Crab pulsar

P: 33 ms

Pdot: 36 ns/day

Characteristic age: 1250 y

Sounds!

## Millisecond pulsars

- A clear separate population in the P-Pdot diagram.
- These are old pulsars with short rotational periods and relatively eventful life-histories – they have all been spun-up by accretion from a binary companion.
- Usually very stable clocks.

See lecture 8!



## Binary pulsars

Only about 17% of known pulsars are millisecond pulsars (P < 30 ms), but about 55% of these are in binary systems.



## Binary pulsars

 There are several evolutionary scenarios for binary systems that involve pulsars.

 Lectures 8 & 9 will cover these.

