Pulsars and Supernovae II

5. DISTRIBUTIONS AND POPULATIONS

P-PDOT plane
characteristic age
death line
galactic distribution
parallax
Crab and Vela pulsars
millisecond pulsars
binary pulsars

The P-Pdot diagram

- By timing pulsars individually, one can measure the variation in period with time. This is usually expressed as a Taylor series:

$$
P(t)=P\left(t_{0}\right)+\left.\frac{\mathrm{d} P}{\mathrm{~d} t}\right|_{t_{0}}\left(t-t_{0}\right)+\left.\frac{\mathrm{d}^{2} P}{\mathrm{~d} t^{2}}\right|_{t_{0}} \frac{\left(t-t_{0}\right)^{2}}{2!}+\ldots
$$

- The first two coefficients are known as P and Pdot (\dot{P}) - the fitted period and period derivative of the pulsar.
- Higher coefficients are always much smaller and are often dominated by the pulsar's timing noise.
- P and Pdot together give a good indication of the age, magnetic field and luminosity of the pulsar, and a scatter diagram of all known pulsars in the P-Pdot plane is useful in identifying types of pulsars, and constraining radiation mechanisms.

The P-Pdot diagram

- Age:

$$
\tau \propto P / \dot{P}
$$

- Magnetic field:

$$
B \propto(\dot{P} P)^{1 / 2}
$$

- Spin-down luminosity:

$$
L \propto \dot{P} / P^{3}
$$

The P-Pdot diagram

Characteristic age

- We characterise the spin-down of a pulsar in terms of its braking index (see first lecture)

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}(=\dot{v}) \propto-v^{n}
$$

with $n=3$ for magnetic dipole braking. Expressing this in terms of pulsar period, and integrating from some initial period P_{0} to its present value after time T gives

$$
T=\frac{P}{(n-1) \dot{P}}\left[1-\left(\frac{P_{0}}{P}\right)^{n-1}\right] .
$$

- If $P_{0} \ll P$ and $n=3$ we get the characteristic age of the pulsar to be

$$
\tau_{c}=\frac{P}{2 \dot{P}}
$$

Death line

- There is a clear absence of pulsars in the lower right of the P-Pdot diagram, to the left of the Death line.
- This may be indicating that the pulsar mechanism can't fire-up if the field strengths are too low.
- The rotating magnetised neutron star is expected to generate a strong electric field that accelerates particles and generates more particles by a cascade mechanism (see later lectures).

- Neutron stars below the death line may have too little rotation and/or magnetic field to kick this cascade mechanism off, but it is not a precise boundary.

Galactic distribution

- Our current sample of pulsars shows strong selection effects, reflecting the difficulty of detecting pulsars at great distances:

Galactic distribution

- Most pulsars, like most stars, are in the galactic plane, but with a high velocity dispersion (up to 1000 km/s). Perhaps half have galactic escape velocities

Lorimer 2005

5. Distributions and populations

Annual parallax

- How distant are pulsars?
- DM is only a useful indicator once you know the electron density structure in the galaxy!
- Accurate pulsar timing can reveal the curvature of the wavefronts from a nearby pulsar:

The Crab pulsar and the Vela pulsars

- Two pulsars deserve particular attention -- the Crab and Vela pulsars are young, with high spindown rates, associated supernova remnants and optical, X and gamma ray pulses:

Vela pulsar (PSR B0833-45)
P: 89 ms
Pdot: 10 ns/day
Characteristic age: 12180 y

Crab pulsar
P: 33 ms
Pdot: 36 ns/day
Characteristic age: 1250 y

Millisecond pulsars

- A clear separate population in the P-Pdot diagram.
- These are old pulsars with short rotational periods and relatively eventful life-histories - they have all been spun-up by accretion from a binary companion.
- Usually very stable clocks.

See lecture 8!

Binary pulsars

- Only about 17\% of known pulsars are millisecond pulsars ($P<30 \mathrm{~ms}$), but about 55% of these are in binary systems.

Total: 3359 (approximate numbers, as of 2023)

Binary pulsars

- There are several evolutionary scenarios for binary systems that involve pulsars.
- Lectures 8 \& 9 will cover these.

