
IOR1: radio telescopes

The radiometer equation – a more careful look

In the lectures we derive the equation

SNR = 𝑇A
𝑇sys

(𝛥𝜈𝜏)1/2 , (1)

sometimes called the radiometer equation, to determine
the signal-to-noise ratio from a source generating an an-
tenna temperature 𝑇A using a telescope with a system
temperature 𝑇sys, a bandwidth 𝛥𝜈 and an integration time
𝜏. Although this result is rigorously correct we made a
couple of hand-wavy approximations along the way, so
here we’ll do it more carefully.

A radio source (and any other contributing noise
source) will generate a randomly fluctuating voltage 𝑢(𝑡)
at the antennawhichwewill assumehas a gaussian proba-
bility distribution with a standard deviation 𝜎 and a mean
of zero, so that the probability density for 𝑢 is

𝑝(𝑢) = 1
(2π)1/2𝜎

exp (−𝑢
2

2𝜎2 ) . (2)

Our radio telescope system generates a signal 𝑉(𝑡), pro-
portional to [𝑢(𝑡)]2, which we use as our estimator for the
noise power. If the signal from the source is the only noise
present, then the mean of 𝑉 is proportional to the source’s
flux density. If there are other noise sources present then
only part of 𝑉 will be from the source. The pdf of 𝑉 is
one-sided (𝑉 ≥ 0), and is related to 𝑝(𝑢) by

𝑝(𝑉) |d𝑉| = 2𝑝(𝑢) |d𝑢| (𝑉 ≥ 0). (3)

Using
d𝑉 = 2𝑢 d𝑢, (4)

we can write

𝑝(𝑉) = 𝑉−1/2

(2π)1/2𝜎
exp (−𝑉

2

2𝜎2 ) . (5)

This is known as a chisquared distribution with one degree
of freedom, and has a mean of

⟨𝑉⟩ = ∫
∞

0
𝑉𝑝(𝑉) d𝑉 = 𝜎2, (6)

and a variance of

var[𝑉] = ⟨𝑉2⟩ − ⟨𝑉⟩2 (7)

= ∫
∞

0
𝑉2𝑝(𝑉) d𝑉 − 𝜎4 (8)

= 2𝜎4. (9)

The standard deviation of 𝑉 is therefore√2𝜎2, or√2⟨𝑉⟩.
If the random signal is the only ‘noise’ in the system, then
the signal-to-noise ratio is simply

SNR = ⟨𝑉⟩
[var(𝑉)]1/2

= 1
√2

. (10)

In the lectures we use a plausibility argument to say that
this signal-to-noise ratio is ‘≃ 1’, but the result above is
more rigorous. If other noise sources are present things
are a little more complicated, but the basic argument
still holds. The signal will now be represented by the
power from just the source, proportional to the antenna
temperature 𝑇A, and the total noise power by the system
temperature 𝑇sys, so that

SNR = 𝑇A
𝑇sys√2

. (11)

We can now consider how to improve this signal-to-noise
ratio by integrating (averaging) the sample values of 𝑉
over some interval of time 𝜏. Let there be 𝑁 samples of
𝑉 (or 𝑢) in time 𝜏. If the samples are statistically inde-
pendent, and 𝑁 ≫ 1, then (by definition) the standard
deviation of the average is√𝑁 less than that of a sample
signal-to-noise ratio, i.e.,

SNR = 𝑇A
𝑇sys√2

√𝑁. (12)

Samples 𝑢𝑖 and 𝑢𝑗 will be independent if

⟨𝑢𝑖𝑢𝑗⟩ = ⟨𝑢2⟩𝛿𝑖𝑗, (13)

i.e., if the autocorrelation of 𝑢 is a delta function at the
origin. This corresponds (by the Wiener–Khinchin the-
orem) to a white (‘flat’) power spectrum for the noise.
The Nyquist sampling theorem tells us that a sampling
interval of 𝜏/𝑁 corresponds to a bandwidth of 𝛥𝜈 where

𝛥𝜈 = 1
2
𝑁
𝜏 , (14)

so
𝑁 = 2𝛥𝜈𝜏, (15)

(in the lectures we say that ‘𝑁 ≃ 𝛥𝜈𝜏’), and therefore our
final signal-to-noise ratio is

SNR = 𝑇A
𝑇sys21/2

(2𝛥𝜈𝜏)1/2 = 𝑇A
𝑇sys

(𝛥𝜈𝜏)1/2 . (16)

Note that the two factors of √2 introduced by our more
careful analysis cancel out, so the precise and ‘approxi-
mate’ results are the same.
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