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1 Fourier transforms and antennas 2: tricks and tips

Fourier transforms can seem daunting, but there are some useful rules that can simplify the anal-
ysis and keep you on track.

1.0.1 1: Fourier transforms are reversible

The two domains involved in the transform (aperture/sky for us, but time/frequency for a spec-
trum) hold the same information in two ways and often with complex numbers in at least one
of the domains. Nothing is lost when you flip between these representations, so you can always
undo the transform. Indeed, you need exactly the same number of bits to represent the data in
either domain. However, information is usually lost if you determine (say) a beam power pat-
tern by performing a mod-square of a transform because in doing that you have thrown away the
phase of the transform.

In the analysis below we’ll use conjugate variables s and u. Think of s as an angle from the
zenith on the sky and u as a distance on the ground measured in units of wavelength.

We’ll start by defining an unsymmetrical function f (u) to use as the basis of an aperture func-
tion:

In [1]: %matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

def f(u):

# a squiggly curve as an example of a function, based on two gaussians

f = np.exp(-u**2 / 0.4) + 0.5*np.exp(-(u-2)**2 / 3)

return f

In [2]: u = np.linspace(-30,30,300) # generate u axis values

# and plot it

plt.rcParams["figure.figsize"] = (10,4)

plt.rcParams['mathtext.fontset'] = 'stix'

plt.rcParams['font.size'] = 18

plt.rcParams['font.family'] = 'STIXGeneral'

plt.plot(u,f(u))

plt.xlabel('$u$')

plt.ylabel('$f(u)$');
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and compute its Fourier transform,

F(s) =
∫ ∞

−∞
f (u) exp(2πisu)du.

Because f (u) is not symmetrical around the origin the transform is complex, so we will plot the
real and imaginary parts separately:

In [3]: F = np.fft.fft(f(u)) # do the fft of f(x)

s = np.fft.fftfreq(F.size, 1) # generate the s axis

plt.plot(s, (F.real), s,(F.imag))

plt.xlabel('$s$')

plt.ylabel('$F(s)$ (real and imaginary)');

Now we do the inverse transform to check we get f (u) back:
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In [4]: ff = np.fft.ifft(F) # do the inverse fft of f(u)

In [5]: plt.plot(u,ff.real, u,ff.imag)

plt.xlabel('$u$')

plt.ylabel('$f(u)$ reconstructed');

You can see above that we have reconstructed the original real function f (u). However there is
a very small imaginary component now due to numerical rounding errors (plot it separately and
you’ll see it’s non-zero).

If we try to reconstruct f (u) from its power pattern then it doesn’t work in general. We get back
a mangled, symmeterised version of f (u) because we’ve set all the phases to zero. (Think Star
Trek when the transporter malfunctions):

In [6]: ff = np.fft.fftshift(np.fft.ifft(np.abs(F)**2)) # do the fft of |F(x)|^2. The shift is necessary for this one.

plt.plot(u,ff.real, u,ff.imag)

plt.xlabel('$u$')

plt.ylabel('not $f(u)$');
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Convince yourself that this is actually the autocorrelation of f (u) using the convolution theo-
rem below.

1.0.2 2: Convolution is your friend

Convolution is one of the most useful ideas in Fourier theory. The convolution of f (x) and g(x) is
defined as

h(y) =
∫

f (x)g(y − x)dx ≡ f ∗ g,

and the convolution theorem states that

F ( f ∗ g) = F ( f ) · F (g)

and
F ( f · g) = F ({) ∗ F (g),

where F denotes a Fourier transform, so F ( f ) ≡ F in our notation.
This comes into its own when one considers the convolution of a function f (x) with Dirac

delta function positioned at a, δ(x − a). This convolution gives the function f (x) but moved to be
centred at a:

δ(x − a) ∗ f (x) = f (x − a).

We can show this in Python:

In [7]: # generate a delta function at x=10. In discrete maths this can be approximated by filling a single bin.

# The value is chosen so that value*binwidth = 1. In this case, the value is 5 .

delta = np.zeros(len(u))

delta[200] = 5

plt.step(u,delta) # plot like a bargraph

plt.xlabel('$u$')

plt.ylabel('$\delta(u-a)$ with $a=10$');
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In [8]: c = np.convolve(f(u),delta,'same')

plt.plot(u,c)

plt.xlabel('$u$')

plt.ylabel('$\delta(u-a)* f(u)$');

Our function has been shifted to be centred on u = 10.
The convolution theorem tells us that the Fourier transform of f (u − a) is the product of the

Fourier transform of f (u) and the Fourier transform of δ(u − a) (which is simply exp(2πisa)):

F ( f (u − a)) =
∫

δ(u − a) exp(2πius)du ·
∫

f (u) exp(2πius)du = exp(2πisa)F(s).

We immediately see that the effect of shifting the position of f is to introduce a phase ramp in
the transform, but otherwise to leave it unchanged. Therefore the beam pattern, which is the
square modulus of the transform of the aperture function and is therefore insensitive to phase, is
not affected if we move the antenna to a different location. An antenna has the same pattern no
matter where it is located.

Convolution with a smooth function produced a ’blurring’ effect. Every point in one function
is replaced with a copy of the other, and the result summed. Let’s convolve f (u) with a gaussian:

In [9]: blurred = np.convolve(f(u),np.exp(-(u/0.8)**2),'same') # try changing the width of the gaussian (start at 0.8)...

plt.plot(u,blurred)

plt.xlabel('$u$')

plt.ylabel('$f(u)$ convolved with a gaussian');
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1.0.3 Computing antenna power patterns via convolution and multiplication

We can use these ideas to construct complex aperture functions. Let’s start with a fundamental
result based on a comb of delta functions, c(u), evenly spaced in u with a separation a:

c(u) =
∞

∑
j=−∞

δ(u − aj)

In [10]: comb = np.zeros(len(u))

for i in range(0,6):

comb[i*50] = 5

plt.step(u,comb) # plot like a bargraph

plt.xlabel('$u$')

plt.ylabel('$c(u)$');
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We can convolve c(u) with our standard f (u). It’s like a potato print:

In [11]: aperture = np.convolve(f(u),comb,'same')

plt.plot(u,aperture)

plt.xlabel('$u$')

plt.ylabel('$c(u) * f(u)$');

If we think of this as an aperture function from an array of (slightly odd!) antennas each with
an aperture function f (u) then we can compute the beam pattern of the array:

In [12]: ppattern = np.abs(np.fft.fft(aperture))**2

plt.step(s,ppattern)

plt.xlabel('$s$')

plt.ylabel('array power pattern');
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Let’s understand this. The transform of an infinite comb is another infinite comb:

C(s) = F (c(x)) = ∑
j

exp(2πiajs) =
1
a ∑

j
δ

(
s − j

a

)
and the transform of our array aperture function should, by the convolution theorem, be the (mod-
squared of) product of this comb with the transform of the repeating element:

In [13]: plt.step(np.fft.fftshift(s),0.2*np.fft.fftshift(np.abs(np.fft.fft(comb)))**2) # the power pattern of the comb

plt.plot(np.fft.fftshift(s),np.fft.fftshift(np.abs(np.fft.fft(f(u))))**2,linewidth =4) # the power pattern of one element

plt.xlabel('$s$')

plt.ylabel('F(s)');

That looks consistent: the product of the blue comb and the orange power pattern from a single
element gives the power pattern of the array shown above. The central peak is very narrow (this
is an infinite array after all!) and there are grating responses that die away to the sides. It’s clear
that they are attenuated because the individual elements become insensitive at larger angles from
the zenith.

1.0.4 A finite array of finite elements

We chose an asymmetrical form for f (u) to be as general as possible. A more likely aperture
function would be symmetrical, and maybe uniform over each element.

Let’s define the aperture function for a single element as A(s) and make it a top hat of width
4:

In [14]: u = np.linspace(-200,200,1000) # generate u axis values -- an expanded scale to make the power pattern easier to see later

A =np.piecewise(u, [np.abs(u) < 2, np.abs(u) >= 2], [1, 0])

plt.plot(u,A)

plt.xlabel('$u$')

plt.ylabel('$A(u)$');
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Lets say there are three of these, spaced 10 units apart. We can construct this with a convolution
and a multiplication. First, make an infinite array of these elements:

In [15]: comb = np.zeros(len(u))

for i in range(0,40):

comb[i*25] = 5

A2 = np.convolve(A,comb,'same')

plt.plot(u,A2)

plt.xlabel('$u$')

plt.ylabel('aperture function');

... then we can turn it into just three elements by multiplying the above by a broad top hat of
width (say) +/- 17 units:
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In [16]: A3 = A2 * np.piecewise(u, [np.abs(u) < 17, np.abs(u) >= 17], [1, 0])

plt.plot(u,A3)

plt.xlabel('$u$')

plt.ylabel('aperture function');

Finally we can compute the antenna pattern using a Fourier transform:

In [17]: ppattern = np.abs(np.fft.fft(A3))**2

s2 = np.fft.fftfreq(A3.size, 1) # generate the s axis

plt.plot(s2,ppattern)

plt.xlabel('$s$')

plt.ylabel('array power pattern')

plt.xlim(-0.2, 0.2)

Out[17]: (-0.2, 0.2)
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This transform is quite straightforward in Python, but one can also do it analytically by con-
sidering the aperture function as being constructed out of convolutions and multiplications of
simpler comb and top-hat functions and using the convolution theorem to combine their trans-
forms. The result will be the same as the graph above.

1.0.5 Moving to two dimensions

We have only considered one dimensional apertures here. The move to two dimensions is straight-
forward, as the Fourier transform extends smoothly:

F ( f (u, v)) = F(s, t) =
∫ ∞

−∞

∫ ∞

−∞
f (u, v) exp[2πi(su + tv)]dudv,

and again this can be applied to aperture functions when the angles involved are small. For
example, a circular aperture:

In [18]: f = np.zeros((512,512))

In [19]: for x in range(-256,256):

for y in range(-256,256):

f[x+256,y+256] = (x**2+y**2)<10**2

In [20]: plt.imshow(f); # here is the aperture

In [21]: F = np.fft.fftshift(np.fft.fft2(f))

P = np.abs(F)**2
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In [22]: # and here is its beam pattern (or aperture diffraction pattern, if you prefer --

# remember the reciprocity theorem tells us they are the same thing)

# Taking the log to make it easier to see the sidelobes:

plt.imshow(np.log(P));
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