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Individual pulses

• A mean pulse profile is made up of the superposition of many 
~gaussian sub-pulses, of random position and strength.  The 
integrated profile reflects the statistics of these sub-pulses:

Stairs 2003

interpulse
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Drifting sub-pulses and nulling

• The sub-pulses can show complex and organised structure

drifting 
sub-pulses

nulling

Taylor and Huguenin 1971
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Micro-pulses

• Each pulse can itself be made from very fine micro-pulses.  
The Crab pulsar (again!) shows remarkably short micro-pulse 
structure in its ‘giant’ pulses:

2 ns resolution (Hankins et al 2003)
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Polarisation of pulses

• In addition, the sub-pulses (and therefore the mean pulse 
profile) show strong polarisation structure:

Manchester, Taylor and Huguenin 1975
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Proposed beam structures

• The pulse/sub-pulse profiles can be explained in terms of 
structure and evolution of the pulsar beam, perhaps 
imagined as nested cones or patches of radiating material: 

• In each instance, the pulse profile depends on the exact 
portion of the beam that shines at us.
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Beam precession

• Different slices through the structured beam will give different 
pulse profiles, and the evolution of the shape can predict when the 
pulsar will precess out of our line-of-sight, e.g. PSR B1913+16:

• Should vanish in about 2025 due to geodetic precession!

Kramer 2008
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Magnetosphere
• Despite the intense strength of the gravitational field close to a 

neutron star, the Lorentz force on a charge vastly exceeds the 
gravitational force

𝑭em = 𝑒 𝒗 × 𝑩
≃ 𝑒𝑅Ω𝐵

𝐹g =
𝐺𝑀𝑚e

𝑅2

𝐹em
𝐹g

=
𝑒Ω𝐵𝑅3

𝐺𝑀𝑚e

• Put in 𝐵 = 109 T, Ω = 2𝜋/1 s, 𝑀 = 1.4𝑀⊙ we get 

𝐹em
𝐹g

∼ 1012



6. Radiation mechanisms9

Magnetosphere

• As a result, charges move as if there 
was no gravity at all, flowing freely 
along magnetic field lines but not 
across them (see plasma course!).

• Residual charges are stripped from 
the surface of the neutron star and a 
charged magnetosphere develops, co-
rotating with the neutron star as if it 
were all a solid body.

• Charges also move freely in the 
neutron star, so that it behaves as a 
superconductor.
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Magnetosphere

• Co-rotation is limited by relativity 
to the light cylinder, of radius

𝑅L =
𝑐

Ω
• Field lines within the light cylinder 

are closed.  Outside  they are open.

• Modelling of the magnetosphere is 
difficult, but charges should flow 
until the Lorentz force is balanced 
by an electric force,  i.e. until

𝑬 + 𝛀 × 𝒓 × 𝑩 = 0

𝑅L
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Polar cap model
• Regions in the magnetosphere where this force-free state 

cannot be maintained are called ‘gaps’.  One of these is above the 
(magnetic) polar cap, where a depleted concentration of charges 
results in a (big!) net force on a charge.

• Gamma ray photons from these accelerating charges interact 
with the B-field to generate electron/positron pairs and a 
cascade of radiation and particles close to the surface of the 
neutron star.

• The pair cascade is thought
to generate the coherent 
emission we see as a
radio pulse.
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Outer gap radiation

• Close to the light cylinder there
is another gap – the outer gap (∼
1014 volts of drop).

• This gap is close to the null line at
𝛀 ⋅ 𝑩 = 0 separating regions of 
opposite charge.

• Here, the magnetic field is weaker 
and pair production harder. 
Radiation from this gap appears as 
synchrotron emission and 
curvature radiation (the electrons 
travel parallel to  the magnetic 
field).

• Usually generates optical, X-ray and 
gamma ray emission.

Null line
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Relativistic beaming

• Material close to the light cylinder is moving at nearly the 
speed of light.

• Relativistic beaming concentrates an otherwise isotropic 

radiation field into a beam of angular width ∼
1

𝛾

• As the source chases its radiation, any apparent pulse is 
shortened by a further factor of ∼ 1/𝛾2

• The beam therefore sweeps over an observer in a time

𝜏 ≃
1

Ω𝛾3

∼ 1/𝛾
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Brightness temperature of coherent emission

• As we saw in lecture 1, the radio emission from pulsars 
shows a much greater apparent brightness temperature 
that can be achieved with random processes:

𝑇b =
𝐵𝑐2

2𝜈2𝑘B
∼ 1030 K

• Only coherent processes can achieve that (if phases of 
emission from different particles are fixed, then power 
increases as the number of particles squared).
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Coherent emission -- Masers

• OH maser emission, e.g.
from expanding shells 
around evolved stars.

• These are narrow band, 
whereas pulsar 
emission is (very) 
broadband, so this is 
not it…
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Brightness temperature of coherent emission

• The process probably relies on electron bunching as 
they are accelerated.

• Radio pulse profiles widen with lower radio 
frequency.  This may be because we are seeing 
emission from higher up the emission cone at lower 
frequencies (perhaps this is a plasma frequency 
effect?)

• An open problem in numerical relativistic plasma 
magnetoelectro-hydrodynamics!


