
AA12M Statistical Astronomy (STA)
problem sheet #2 (with solutions)

This problem sheet covers Bayesian and frequentist methods for parameter estimation and
hypothesis testing. Bayesian questions are tagged with a little ‘B’, frequentist questions with
an ‘F’. Answers to some problems are shown in curly brackets when appropriate. Solutions
are shown immediately after their questions (which are in smaller type), with a horizontal
line separating each problem.

1)B Explain how Bayes’ Theorem is used for parameter estimation in Bayesian Probability Theory.
A telescope is constructed to look for gamma ray bursters (GRBs). Given that GRBs can appear from any
direction (i.e., are distributed isotropically on the sky) what is the prior probability distribution that a GRB
will be seen at a particular declination 𝛿 (hint: consider the fraction of the sky at this declination)? If
𝜇 = sin𝛿, show that the prior for 𝜇 is uniform for−1 < 𝜇 < 1.

Solution to (1) For the first section, see your lecture notes. In Bayesian probability theory
probability represents a degree of belief in a proposition. Bayes’ theorem tells us how new
data modulates our prior beliefs.

The GRBs are isotropic, so the pdf should be invariant under rotation, i.e., there should
be no preferred directions in the sky. If 𝑝(𝛺) d𝛺 is the pdf for finding a GRB in the differ-
ential solid angle d𝛺 in direction 𝛺 then isotropy means that 𝑝(𝛺) d𝛺 = constant. Correct
normalisation gives 𝑝(𝛺) = 1/(4𝜋).

Now let’s change the variables to declination, 𝛿, and right ascension, 𝜙. We know from
spherical polar coordinates that d𝛺 = cos 𝛿 d𝛿 d𝜙. By standard change of variable

𝑝(𝛿, 𝜙)| d𝛿 d𝜙| = 𝑝(𝛺)| d𝛺|,

so
𝑝(𝛿, 𝜙) = cos 𝛿

4𝜋 .

We can marginalise over 𝜙 easily, as the pdf is independent of 𝜙, so that

𝑝(𝛿) = ∫
2𝜋

0
𝑝(𝛿, 𝜙) d𝜙 = 1

2 cos 𝛿.

As instructed, now change the variable to 𝜇 = sin 𝛿. Note that | d𝜇| = | cos 𝛿 d𝛿|. So now

𝑝(𝜇) = 𝑝(𝛿) |||
d𝛿
d𝜇

||| =
cos 𝛿
2 cos 𝛿 = 1

2.

So the prior for 𝜇 is uniform (with the value 0.5) in the range −1 < 𝜇 < 1.

2)B Briefly, what ismarginalisation in the context of Bayesian inference?
In a photon counting experiment we are told that, over a time interval 𝑇, exactly two photons have struck
our detector. Given no other information, write down and justify the joint probability distribution function
(pdf) for the two arrival times 𝑡1 and 𝑡2.
By sketching this pdf, or otherwise, show that the probability that they arrived within a time 𝜏 of each other
is

𝑃(𝜏) = 1 − (1 − 𝜏/𝑇)2.
Given the extra information that they did indeed arrive within a time 𝜏 of each other, sketch the pdfs for
the time:

(a) of the first arrival
(b) of the second arrival
(c) that a photon arrives.
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Solution to (2)

3)B Use your favorite computing resource (Python, Matlab, WolframAlpha, …) to determine the fraction of the
probability contained within a (±)1, 2 and 3 𝜍 zone around the mean of a Gaussian posterior probability
distribution.

Solution to (3) All these are integrals of the form

𝐼𝑎 = ∫
𝑎𝜍

−𝑎𝜍

1
𝜎√2𝜋

e−𝑥2/(2𝜍2) d𝑥

for 𝑎 = 1, 2 and 3. Putting 𝑦 = 𝑥/𝜎 gives

𝐼𝑎 = ∫
𝑎

−𝑎

1
√2𝜋

e−𝑦2/2 d𝑦.

[𝐼𝑎 is related to the ‘error function’, erf(𝑧), by 𝐼𝑎 = erf(𝑎/√2)]. The results (from your com-
puting resource!) are:

𝐼1 = 0.6827 corresponding the the ‘68%’ region of probability,
𝐼2 = 0.9545 corresponding the the ‘95%’ region of probability,
𝐼3 = 0.9973 corresponding the the ‘99.7%’ region of probability.
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4)B From what you know, write down sensible prior probabilities/pdfs for the following quantities:

• The number of sweets in a jar.
• The mass of Neptune.
• The radius of Neptune.

Solution to (4) A deliberately vague question to make you think about the meaning and sub-
jective nature of priors. There is no single correct answer, as a prior encodes one’s current state
of knowledge, and different people are in different states! Two people with identical states of
knowledge should, however, assign identical prior probabilities. Priors may be subjective, but
they are also deterministic.

• The number of sweets in a jar: the number of sweets in sensible jars can be as high as
several thousand, but we have no information other than our experience of sweets and
jars. Let us say that themaximumnumber that is possible is 𝐿, then if we have no reason
to prefer 𝑛 sweets over𝑚 sweets all numbers less than or equal to 𝐿 are equally probable
(including zero), so that

𝑝(𝑛) = 1
𝐿 + 1, (0 ≤ 𝑛 ≤ 𝐿).

Youmay think that a sharp cutoff for 𝐿 is not justified, so that very big jars (or very small
sweets) are just unlikely rather than impossible. In this case you would modify the pdf
to roll-off at high 𝑛 rather than stop abruptly. Note the normalisation would have to be
re-evaluated. Again, this is fine so long as you state your prior precisely.

• The mass of Neptune: you may know this off the top of your head, in which case you
may be able to quote a rather tight prior around that numerical value with some spread
describing your uncertainty in the value. Alternatively youmay have no idea other than
it’s somewhere between themass of theEarth and themass of the Sun. If you really think
every mass between the two is equally likely (corresponding to adding another atom
onto the pile) then we are back to the sweet problem, and the pdf is uniform between
its limits.

• The radius of Neptune: again you face a choice of reasonable priors. However there is
more than one way of looking at the problem. If you believe that the density of planets
is constant (you would be wrong to believe this, but it may be your state of belief at the
start!) then the mass and radius of the planet are simply related as 𝑚 ∝ 𝑟3. By change
of variable,

𝑝(𝑟) ∝ 𝑝(𝑚) |||
d𝑚
d𝑟

||| ∝ 𝑝(𝑚)𝑟2.

In the previous problemwe took 𝑝(𝑚) as uniformwithin some range, so to be consistent
𝑝(𝑟) must be ∝ 𝑟2 within the same corresponding range in 𝑟. Sometimes probabilities
can bemore easily assigned by thinking of an associated variable, assigning a probability
to that quantity using a physical argument, and then changing variable to the one you
want. Sometimes two equally plausible assignments are inconsistent, in which case you
need to think harder.

5)F The Central Limit Theorem states that the sum of𝑁 random variables drawn from almost any distribution
will itself be a random variable which, if𝑁 is sufficiently large, will be Normally distributed. Extend this
idea to the product of𝑁 random variables(all > 0), and determine the distribution of this product (called
the Lognormal distribution).
Why might the masses of bodies in the rings of Saturn have a Lognormal distribution?
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Solution to (5) The Central Limit Theorem tells us that if 𝑋 = 𝑥1 + 𝑥2 + 𝑥3 +…+ 𝑥𝑁 and if
𝑥𝑖 are all random variables drawn from the same parent population with a well defined mean
and variance then, for sufficiently large𝑁, the pdf of 𝑋 becomes Normal (i.e., it has a Central
distribution). So let 𝑌 = 𝑥1 ⋅ 𝑥2 ⋅ … ⋅ 𝑥𝑁 (𝑥𝑖 > 0), then ln𝑌 = ln 𝑥1 + ln 𝑥2 + … + ln 𝑥𝑁 and
𝑍 = ln𝑌 = 𝑧1 + 𝑧2 +…+ 𝑧𝑁, where 𝑧𝑖 are random variables. We can apply the Central Limit
Theorem to 𝑍. Its pdf will be Normal with some mean 𝜇 and variance 𝜎2 so that

𝑝(𝑍) = 1
√2𝜋𝜎

exp [−(𝑍 − 𝜇)2
2𝜎2 ] .

If we now change variable to 𝑌 = e𝑍 then d𝑍/ d𝑌 = 1/𝑌 so that

𝑝(𝑌) = 𝑝(𝑍) |||
d𝑍
d𝑌

||| =
𝑝(𝑍)
𝑌 = 1

𝑌
1

√2𝜋𝜎
exp [−(ln𝑌 − 𝜇)2

2𝜎2 ] ,

with 𝑌 > 0.
This is the Lognormal distribution. If we think of large rocks in Saturn’s rings undergoing

collisions, then we may expect the rocks to split into two on each collision with some pdf for
the relative sizes of the two fragments. If 𝑥 above represents a particular splitting fraction,
then 𝑌 represents the size of a fragment after 𝑁 collisions, relative to its initial size. If all the
rocks began the same size and underwent the same number of collisions then the fragments
we see today would have a Lognormal distribution. Rather a lot of ‘ifs’ there, and in fact
the distribution of rock sizes in Saturn’s rings is not Lognormal as far as we know, but the
Lognormal distribution is rather common in nature.

6)B Outline the reasoning behind ‘least-squares’ parameter estimation within a Bayesian framework.
For a set of data, {𝑌𝑘}, with associated error bars {𝜍𝑘}, taken at known ‘positions’ {𝑥𝑘} derive the best slope
(𝑚0) and intercept (𝑐0) for a straight line fit.

Solution to (6) See your lecture notes for the first part. It is a result of seeking the most likely
value of the posterior when the prior is uniform and the likelihood is Gaussian.

The analysis for𝑚0 and 𝑐0 is done in Sivia, page 69: let the straight line we want to fit have
value 𝑦𝑘 at position 𝑥𝑘 so that

𝑦𝑘 = 𝑚𝑥𝑘 + 𝑐.
Our job is to find the best values of slope and intercept. Least-squares minimises the quantity

𝜒2 =
𝑁
∑
𝑘=1

(𝑚𝑥𝑘 + 𝑐 − 𝑌𝑘)2
𝜎2𝑘

.

We do the minimisation by considering

𝜕𝜒2
𝜕𝑚 =

𝑁
∑
𝑘=1

2(𝑚𝑥𝑘 + 𝑐 − 𝑌𝑘)𝑥𝑘
𝜎2𝑘

and 𝜕𝜒2
𝜕𝑐 =

𝑁
∑
𝑘=1

2(𝑚𝑥𝑘 + 𝑐 − 𝑌𝑘)
𝜎2𝑘

.

By setting both these partial derivatives to zero at𝑚 = 𝑚0 and 𝑐 = 𝑐0, we get two simultaneous
equations in𝑚0 and 𝑐0 that can be written as

( 𝛼 𝛾
𝛾 𝛽

) ( 𝑚0
𝑐0

) = ( 𝑎
𝑏
) ,

where 𝛼 = ∑2𝑥2𝑘/𝜎2𝑘 , 𝛽 = ∑2/𝜎2𝑘 , 𝛾 = ∑2𝑥𝑘/𝜎2𝑘 , 𝑎 = ∑2𝑥𝑘𝑌𝑘/𝜎2𝑘 and 𝑏 = ∑2𝑌𝑘/𝜎2𝑘 . By
matrix inversion the solutions are

𝑚0 =
𝛽𝑎 − 𝛾𝑏
𝛼𝛽 − 𝛾2 and 𝑐0 =

𝛼𝑏 − 𝛾𝑎
𝛼𝛽 − 𝛾2 .
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7)B 𝑁 observations of the flux density of a quasar, {𝑥𝑘}, are affected by interstellar scintillation which intro-
duces Gaussian errors of (unknown) variance 𝜍2. Explain what is meant by the likelihood of these data,
and show that, if the measurements are independent, the likelihood is

𝑝({𝑥𝑘}|𝜇, 𝜍, 𝐼) = (𝜍√2𝜋)−𝑁 exp [− 1
2𝜍2

𝑁
∑
𝑘=1

(𝑥𝑘 −𝜇)2] ,

where 𝜇 is the true flux density of the quasar.
Explain the importance of the joint posterior pdf of𝜇 and𝜍 for parameter estimation. What is themeaning
of the marginal posterior pdf for 𝜇 alone? Show that, if the priors for 𝜇 and 𝜍 are uniform for values > 0
and zero otherwise, the marginal posterior pdf for 𝜇 is

𝑝(𝜇|{𝑥𝑘}, 𝐼) ∝ ∫
∞

0
𝑡𝑁−2 exp [−𝑡2

2
𝑁
∑
𝑘=1

(𝑥𝑘 −𝜇)2] d𝑡,

where 𝑡 = 1/𝜍. Evaluate the un-normalised value of this,* given the standard result

∫
∞

0
𝑥𝑛 exp(−𝑎𝑥2) d𝑥 ∝ 𝑎−(𝑛+1)/2.

By examining the maximum of 𝐿 = ln [𝑝(𝜇|{𝑥𝑘}, 𝐼)], show that the best estimate for 𝜇 is

𝜇0 =
1
𝑁

𝑁
∑
𝑘=1

𝑥𝑘,

and that the uncertainly in this is 𝑆/√𝑁 where

𝑆2 = 1
𝑁 − 1

𝑁
∑
𝑘=1

(𝑥𝑘 −𝜇0)2.

Comment on how this result compares to the situation where 𝜍 is known, as derived in the notes.

Solution to (7) This analysis is done in Sivia p. 55. The joint likelihood of independent data
is just the joint probability of the data, given all other parameters. For each measurement the
likelihood is

𝑝(𝑥|𝜇, 𝜎, 𝐼) = 1
√2𝜋𝜎

exp [−(𝑥 − 𝜇)2
2𝜎2 ] .

The joint pdf is the product of these for each 𝑥𝑘, hence

𝑝({𝑥𝑘}|𝜇, 𝜎, 𝐼) = (𝜎√2𝜋)−𝑁 exp [− 1
2𝜎2

𝑁
∑
𝑘=1

(𝑥𝑘 − 𝜇)2] .

By Bayes’ Theorem

𝑝(𝜇, 𝜎|{𝑥𝑘}, 𝐼) ∝ 𝑝(𝜇, 𝜎|𝐼)𝑝({𝑥𝑘}|𝜇, 𝜎, 𝐼).

We are told that the joint prior for 𝜇 and 𝜎, 𝑝(𝜇, 𝜎|𝐼), is uniform for positive values, zero oth-
erwise. Using this and marginalising over 𝜎 we get

𝑝(𝜇|{𝑥𝑘}, 𝐼) ∝ ∫
∞

0
𝜎−𝑁 exp [− 1

2𝜎2
𝑁
∑
𝑘=1

(𝑥𝑘 − 𝜇)2] d𝜎.

Now putting 𝑡 = 1/𝜎 and d𝜎 = −d𝑡/𝑡2 we get

𝑝(𝜇|{𝑥𝑘}, 𝐼) ∝ ∫
∞

0
𝑡𝑁−2 exp [−𝑡

2

2
𝑁
∑
𝑘=1

(𝑥𝑘 − 𝜇)2] d𝑡,

*The answer you get is basically Student’s 𝑡 distribution, derived from Bayesian principles.
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as required. The standard integral given in the question lets us express this as

𝑝(𝜇|{𝑥𝑘}, 𝐼) ∝ [12
𝑁
∑
𝑘=1

(𝑥𝑘 − 𝜇)2]
−(𝑁−1)/2

.

Now set

𝐿 = ln [𝑝(𝜇|{𝑥𝑘}, 𝐼)] = −𝑁 − 1
2 ln [

𝑁
∑
𝑘=1

(𝑥𝑘 − 𝜇)2] + 𝑐,

d𝐿
d𝜇 =

(𝑁 − 1)∑𝑁
𝑘=1(𝑥𝑘 − 𝜇)

∑𝑁
𝑘=1(𝑥𝑘 − 𝜇)2

= 0 at 𝜇 = 𝜇0 ,

where 𝜇0 is the most probable value of 𝜇. The solution to this is

𝜇0 =
1
𝑁

𝑁
∑
𝑘=1

𝑥𝑘

as stated.
For the variance of this result we consider

d2𝐿
d𝜇2 =

−𝑁(𝑁 − 1)
∑𝑁

𝑘=1(𝑥𝑘 − 𝜇)2
,

and use the result

𝜎2𝜇 = (− d2𝐿
d𝜇2

||𝜇0
)
−1

= 1
𝑁(𝑁 − 1)

𝑁
∑
𝑘=1

(𝑥𝑘 − 𝜇0)2.

Hence 𝜎𝜇 = 𝑆/√𝑁 where

𝑆2 = 1
𝑁 − 1

𝑁
∑
𝑘=1

(𝑥𝑘 − 𝜇0)2.

In the lectures we considered the same problem but where the variance of the original
observations, 𝜎2, was known. In these circumstances 𝜎𝜇 = 𝜎/√𝑁. So the above analysis has
naturally deduced that the right thing to do is estimate the variance from the spread in the
data and use 𝑆 in place of 𝜎. In frequentist statistics 𝑆 is the unbiased estimate of 𝜎.

8)B A spacecraft is sent to a moon of Saturn, and, using a penetrating probe, detects a liquid sea under the
surface at 1 atmosphere pressure and a temperature of −3 ∘C. However the thermometer has a random
fault, so that the temperature reading may differ from the true temperature by as much as ±5 ∘C with
uniform probability within that range.

(a) Assuming the liquid is water (background information 𝐼1), which is a liquid for 0 ∘C < 𝑇 < 100 ∘C,
(i) write down, and draw, a sensible prior for the temperature of the liquid, 𝑝(𝑇|𝐼1).
(ii) write down, the likelihood of the data, given the instrument’s troublesome performance and

sketch its variation with 𝑇.
(iii) compute, and draw, the normalised posterior pdf for the temperature.

(b) Now repeat the above analysis assuming the liquid is ethanol (background information 𝐼2) which is
liquid at one atmosphere between−80 ∘C and 80 ∘C, and comment on the difference in the results.

(c) The calibration error is found to be such that subsequent readings have independent errors within
the range ±5 ∘C.
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(i) By applying the central limit theorem determine, and sketch, the likelihood of the average of
100 such readings.

(ii) Given that this average reading is−1.2 ∘C again calculate, and sketch, the posterior pdfs under
the hypotheses that the liquid is water or ethanol.

(d) (advanced) determine the relative odds that the liquid is water or ethanol following the single mea-
surement and the average measurement.

Solution to (8) This problem is loosely based on an example by John Skilling. John has
done much to promote the cause of Bayesian analysis and, in particular, Maximum Entropy
methods.

(a) First water, 𝐼1,

(i) Here 𝑝(𝑇|𝐼1) = 0.01 for 0 ∘C < 𝑇 < 100 ∘C, zero otherwise. If it’s water the temper-
aturemust be in this range. It has the value 0.01 to get the normalisation right.

(ii) Let themeasurement be 𝑑. Then its likelihood, 𝑝(𝑑|𝑇, 𝐼1), is a top hat, centred on𝑇,
of width 10 ∘C and height 1/10. So 𝑝(𝑑|𝑇, 𝐼1) = 0.1 for |𝑑 − 𝑇| ≤ 5, zero otherwise.
Here, 𝑑 = −3, so the likelihood is 0.1 for |3 + 𝑇| ≤ 5, zero otherwise.

(iii) The posterior is the normalised product of the prior and the likelihood. The prior
only allows temperatures≥ 0 ∘C. The likelihood only allows temperatures between
−5 ∘C and +2 ∘C. The posterior is therefore 𝑝(𝑇|𝑑, 𝐼1) = 0.5 for 0 ≤ 𝑇 ≤ 2 ∘C, zero
otherwise. Note we can also evaluate the evidence, 𝑝(𝑑|𝐼1). This is a measure of
how good the original question was. The evidence here is∫𝑝(𝑑|𝑇, 𝐼1)𝑝(𝑇|𝐼1) d𝑇 =
0.002. We can assess the significance of this later.

(b) Now for ethanol, 𝐼2, the prior is 𝑝(𝑇|𝐼2) = 1/160 for−80 ∘C < 𝑇 < 80 ∘C, zero otherwise.
The likelihood is the same as for 𝐼1, and the posterior is now 𝑝(𝑇|𝑑, 𝐼2) = 0.1 for −8 ≤
𝑇 ≤ 2 ∘C, zero otherwise. Again we can evaluate the evidence as
∫𝑝(𝑑|𝑇, 𝐼2)𝑝(𝑇|𝐼2) d𝑇 = 0.006 25. This is a factor ∼ 3 greater than for water, so all
things being equal ethanol is a better bet.

(c) To apply the CLT we need the mean and variance of the individual errors that we com-
bine when we take the mean of 100 samples. The question states that the pdf of the
errors is uniform with a width of 10 ∘C. The mean error is clearly zero and the variance
is

𝜎21 = ∫
5

−5

𝑥2
10 d𝑥 =

25
3 = 8.33.

(i) After 100 measurements the variance of the mean of these should be (by the CLT)
𝜎2100 = 𝜎21 /100, so 𝜎100 = 0.289. We can now write the likelihood of this averaged
data, 𝑑m, as a Gaussian (again, by the CLT) :

𝑝(𝑑m|𝑇) =
1

√2𝜋𝜎100
exp [−(𝑑m − 𝑇)2

2𝜎2100
] .

(ii) If 𝑑m = −1.2 ∘C then for both 𝐼1 and 𝐼2

𝑝(𝑑m = −1.2 ∘C|𝑇) ∝ exp [−12 (
−1.2 − 𝑇
0.289 )

2
] .

This is strongly peaked around 𝑇 = −1.2 ∘C, so the water hypothesis (𝐼1) will strug-
gle as the likelihood and prior fight each other. We can of course still determine
the posterior distribution for 𝑇 under the water hypothesis. It is

𝑝(𝑇|𝑑m, 𝐼1) =
exp [−1

2
(−1.2−𝑇

0.289
)
2
]

0.000 011 9
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for 0 ≤ 𝑇 ≤ 100 ∘C, zero otherwise. The normalising constant was computed in
Maple, but you could use tables. The most probable temperature for the water
hypothesis is 0 ∘C – the best trade-off between prior prejudice and the data!
For ethanol the corresponding expression is

𝑝(𝑇|𝑑m, 𝐼2) =
exp [−1

2
(−1.2−𝑇

0.289
)
2
]

0.724
for −80 ≤ 𝑇 ≤ 80 ∘C, zero otherwise. The most probable temperature is −1.2 ∘C
for this hypothesis, dominated by the data.

(d) Taking the relative prior odds of 𝐼1 and 𝐼2 to be one (i.e., assuming there is no reason
to favour one over the other before the data are available), the posterior relative odds
is simply the ratio of the two evidences as defined above. We have seen that for the
singlemeasurement this ratio is about 3:1 in favour of ethanol. Once 100measurements
have been averaged the odds favour ethanol very strongly. Using the same equations,
and Maple, the odds ratio comes out to be about 38 000:1 in favour of ethanol! Both
hypotheses deliver answers, but the ethanol hypothesis ismuchmore convincing.

9)B An important topic in X-ray astronomy is the determination of the X-ray background rate, 𝑏 (i.e., the rate
of arrival of X-rays from the background sky).
An X-ray telescope observes a ‘blank’ area of sky and counts 𝑛 X-ray photons in a time 𝑇. The likelihood
of this observation follows the Poisson distribution,

𝑝(𝑛|𝑏, 𝐼) = (𝑏𝑇)𝑛e−𝑏𝑇
𝑛! .

Taking 𝑏 to be a scale parameter, assign it a prior, 𝑝(𝑏|𝐼), and determine the normalised posterior for 𝑏.
You will need to use

∫
∞

0
𝑥𝑚e−𝑎𝑥 d𝑥 = 𝑚!

𝑎𝑚+1 (𝑎 > 0; 𝑚 = 0, 1, 2…).

Show that the mean of this posterior is 𝑛/𝑇, and that its standard deviation is the mean divided by√𝑛.
Repeat this analysis using a uniform prior for 𝑏. Do the two results differ substantially?

Solution to (9) If 𝑏 is a true scale parameter then 𝑝(𝑏|𝐼) ∝ 1/𝑏 by definition. So the posterior
of 𝑏 is

𝑝(𝑏|𝑛, 𝐼) ∝ 𝑝(𝑏|𝐼)𝑝(𝑛|𝑏, 𝐼)

∝ 1
𝑏
(𝑏𝑇)𝑛e−𝑏𝑇

𝑛!
= 𝑐𝑏𝑛−1e−𝑏𝑇

where 𝑐 is the normalising constant. Normalising we get

1 = 𝑐∫
∞

0
𝑏𝑛−1e−𝑏𝑇 d𝑏

= 𝑐 (𝑛 − 1)!
𝑇𝑛 ,

so finally
𝑝(𝑏|𝑛, 𝐼) = 𝑇𝑛

(𝑛 − 1)!𝑏
𝑛−1e−𝑏𝑇.

By definition of the mean

⟨𝑏⟩ = ∫
∞

0
𝑏𝑝(𝑏) d𝑏 = 𝑇𝑛

(𝑛 − 1)!∫
∞

0
𝑏𝑛e−𝑏𝑇 d𝑏 = 𝑛

𝑇 .
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Similarly, the variance is
𝜎2 = ⟨𝑏2⟩ − ⟨𝑏⟩2.

For which we need

⟨𝑏2⟩ = ∫
∞

0
𝑏2𝑝(𝑏) d𝑏 = 𝑇𝑛

(𝑛 − 1)!∫
∞

0
𝑏𝑛+1e−𝑏𝑇 d𝑏 = 𝑛(𝑛 + 1)

𝑇2 ,

so 𝜎2 = 𝑛/𝑇2 and 𝜎 = ⟨𝑏⟩/√𝑛.
Using a uniform prior gives ⟨𝑏⟩ = (𝑛+1)/𝑇 and 𝜎 = ⟨𝑏⟩/√𝑛 + 1. For 𝑛 ≫ 1 the two priors

give indistinguishable results: the data overwhelms the prior ignorance.

10)F The fraction,𝑋, of the surface of a star covered in starspots is modelled as a random variable with pdf (with
𝑘 constant)

𝑝(𝑥) = 𝑘
√𝑥(1 − 𝑥)

, 0 < 𝑥 < 1

(a) Determine 𝑘 so that 𝑝(𝑥) is properly normalised. {1/𝜋}
(b) Find the expected fraction of the surface covered in starspots. {1/2}
(c) What is the probability that the fraction covered is less than 25%? {1/3}

Solution to (10) To normalise 𝑝(𝑥) we require that

∫
1

0

𝑘
√𝑥(1 − 𝑥)

d𝑥 = 1.

The trick here is to use the substitution 𝑥 = sin2 𝜃, so that d𝑥 = 2 sin 𝜃 cos 𝜃 d𝜃. The integral
now becomes

1 = 2𝑘∫
𝜋/2

0
d𝜃,

so 𝑘 = 1/𝜋.
The expectation value of 𝑥 is just

⟨𝑥⟩ = ∫
1

0
𝑥𝑝(𝑥) d𝑥,

and this can be integrated using the same substitution as above to give ⟨𝑥⟩ = 1/2.
The probability that a fraction 𝑡 of the surface is covered by spots is

𝑃(𝑡) = ∫
𝑡

0
𝑝(𝑥) d𝑥 = 2

𝜋 sin−1 𝑡1/2,

using the same substitution as before. When 𝑡 = 1/4 this reduces to 𝑃(𝑥 < 0.25) = 1/3.

11)B The redshift of a quasar is measured to be 𝑧1 with a standard deviation of 𝜍.

(a) Assuming the uncertainty in this data is Gaussian, explain why a uniform prior probability distribu-
tion for 𝑧 implies a normalised posterior probability distribution for 𝑧 of

𝑝(𝑧|𝑧1) =
1

(2𝜋𝜍2)1/2 exp [−
(𝑧 − 𝑧1)2

2𝜍2 ]

(b) A second measurement, 𝑧2, also of standard deviation 𝜍, is made with the same setup. Write down
an expression for the likelihood of 𝑧 based solely in this second measurement, 𝑝(𝑧2|𝑧), and hence
show that the new posterior probability distribution is

𝑝(𝑧|𝑧1, 𝑧2) ∝
1

2𝜋𝜍2 exp [−
(𝑧 − 𝑧1)2 + (𝑧 − 𝑧2)2

2𝜍2 ]
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(c) Show that this can be written in the form

𝑝(𝑧|𝑧1, 𝑧2) ∝
1

2𝜋𝜍2 exp [−
𝐴(𝑧 − 𝑧m)2 + 𝑐

2𝜍2 ]

and evaluate𝐴, 𝑧m, and 𝑐. Hence show that𝑝(𝑧|𝑧1, 𝑧2) is also Gaussian with amean of (𝑧1+𝑧2)/2
and a standard deviation of 𝜍/√2, commenting on these results.

(d) Usually, one might expect that the two measurements 𝑧1 and 𝑧2 would be within about 𝜍 of each
other, but on this occasion 𝑧1 − 𝑧2 = 10𝜍 . Sketch graphs of 𝑝(𝑧|𝑧1), 𝑝(𝑧|𝑧2) and 𝑝(𝑧|𝑧1, 𝑧2) for
this situation, and give an interpretation of what may be going on here. Why is the uncertainty in
the final posterior so (relatively) small?

(e) Define the evidence (or ‘marginal likelihood’) for this dataset, and briefly describe the role it plays in
Bayesianparameter estimation. Show that the evidence in this problem is proportional toexp [−𝑐/(2𝜍2)],
and comment on how its value depends on the magnitude of 𝑧1 − 𝑧2.

Solution to (11)

(a) Bayes Theorem states that
𝑝(𝑧|𝑧1) =

𝑝(𝑧)𝑝(𝑧1|𝑧)
𝑝(𝑧1)

.

If 𝑝(𝑧) is uniform, and the likelihood is Gaussian, then

𝑝(𝑧|𝑧1) ∝ exp (−(𝑧 − 𝑧1)2
2𝜎2 ) .

Normalising this correctly we get

𝑝(𝑧|𝑧1) =
1

(2𝜋𝜎2)1/2 exp (−
(𝑧 − 𝑧1)2
2𝜎2 ) .

(b) The likelihood of 𝑧 is

𝑝(𝑧2|𝑧) =
1

(2𝜋𝜎2)1/2 exp (−
(𝑧 − 𝑧2)2
2𝜎2 ) .

By Bayes Theorem

𝑝(𝑧|𝑧1, 𝑧2) =
𝑝(𝑧|𝑧1)𝑝(𝑧2|𝑧, 𝑧1)

𝑝(𝑧2|𝑧1)
) = 1

𝑝(𝑧2|𝑧1)
1

2𝜋𝜎2 exp (−
(𝑧 − 𝑧1)2 + (𝑧 − 𝑧2)2

2𝜎2 ) .

(c) Let

(𝑧 − 𝑧1)2 + (𝑧 − 𝑧2)2 = 𝐴(𝑧 − 𝑧m)2 + 𝑐
2𝑧2 − 2𝑧(𝑧1 + 𝑧2) + 𝑧21 + 𝑧22 = 𝐴𝑧2 − 2𝐴𝑧𝑧m + 𝐴𝑧2m + 𝑐

so by matching coefficients we see that 𝐴 = 2 and 𝑧m = (𝑧1 + 𝑧2)/2. Also, solving for 𝑐
we get

𝑐 = 1
2 (𝑧

2
1 + 𝑧22) − 𝑧1𝑧2,

so
𝑝(𝑧|𝑧1, 𝑧2) =

1
𝑝(𝑧2|𝑧1)

1
2𝜋𝜎2 exp (−

𝐴(𝑧 − 𝑧m)2 + 𝑐
2𝜎2 )

If we look at the terms that depend in 𝑧, we get

𝑝(𝑧|𝑧1, 𝑧2) ∝
1

2𝜋𝜎2 exp (−
𝐴(𝑧 − 𝑧m)2 + 𝑐

2𝜎2 ) .

This is a Gaussian, mean 𝑧m standard deviation 𝜎/√2, which is exactly to be expected.
We have simply averaged two measurements, decreasing the uncertainty in the value of
𝑧 by√2.
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(d) The two measurements seem inconsistent with each other:

and the final posterior does not appear consistentwith, or justified by, the two individual
posteriors. The point is that we have assumed that our data model is correct (i.e., our
value for 𝜎, Gaussian errors etc). The procedure is interpreting 𝑧1, 𝑧2 as very improbable
measurements consistent with 𝑝(𝑧|𝑧1, 𝑧2) but right in the wings of that distribution.

(e) Bayes says
𝑝(𝑧|𝑧1, 𝑧2, 𝐼) =

𝑝(𝑧|𝐼)𝑝(𝑧1, 𝑧2|𝑧, 𝐼)
𝑝(𝑧1, 𝑧2|𝐼)

The denominator here is the evidence

𝐸 = 𝑝(𝑧1, 𝑧2|𝐼) = ∫𝑝(𝑧|𝐼)𝑝(𝑧1, 𝑧2|𝑧, 𝐼) d𝑧.

The evidence is the probability of the data for anymodel parameter value. It is ameasure
of the appropriateness of the model.

𝐸 = ∫𝑝(𝑧|𝐼)𝑝(𝑧1, 𝑧2|𝑧, 𝐼) d𝑧

= ∫ 1
2𝜋𝜎2 exp (−

(𝑧 − 𝑧m)2 − 𝑐/2
𝜎2 ) d𝑧

∝ exp (− 𝑐
2𝜎2 ) × numerical factor depending only on 𝜎

so

ln 𝐸 = − 𝑐
2𝜎2 + const

= 1
2𝜎2 (𝑧1𝑧2 −

1
2(𝑧

2
1 + 𝑧22)) + const

= − 1
4𝜎2 (𝑧1 − 𝑧2)2 + const.

𝜕 ln 𝐸
𝜕𝑧1

= 𝑧2 − 𝑧1
2𝜎2

𝜕2 ln 𝐸
𝜕𝑧21

= − 1
2𝜎2 .

So 𝐸 is maximised when 𝑧2 = 𝑧1, i.e., when both measurements agree.
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12)F Let 𝑝 denote the probability that a particular outcome will happen in any single experiment (called the
probability of a success). The probability, 𝑝(𝑟), of exactly 𝑟 successes in 𝑛 experiments is given by the
binomial distribution:

𝑝(𝑟) = 𝑛!
𝑟!(𝑛 − 𝑟)!𝑝

𝑟(1 − 𝑝)𝑛−𝑟, 𝑟 = 0, 1, … , 𝑛

𝑝(𝑟) has mean 𝜇 = 𝑛𝑝 and variance 𝜍2 = 𝑛𝑝(1 − 𝑝).
Suppose that 60%of the stars in theHubble SpaceTelescope guide star catalogue are binaries, use a binomial
distributionmodel to calculate the probability that a random sample of 5 stars from the guide star catalogue
contains a) 0, b) 1, c) 2, d) 3, e) 4, f) 5 binary stars.
How large a sample should be chosen in order that the probability of the sample containing at least two
non-binary stars is greater than 99%? {14}

Solution to (12) We are told that 𝑝 = 0.6, so by straight substitution

Prob(0 binaries) = (0.6)0(0.4)5 = 0.01024
Prob(1 binary) = 5(0.6)1(0.4)4 = 0.0.0768
Prob(2 binaries) = 10(0.6)2(0.4)3 = 0.2304
Prob(3 binaries) = 10(0.6)3(0.4)2 = 0.3456
Prob(4 binaries) = 5(0.6)4(0.4)1 = 0.2592
Prob(5 binaries) = (0.6)5(0.4)0 = 0.0778

If there are 𝑛 experiments, then the probability that there are at least 2 non-binaries is 1
minus the probability that there are either 𝑛 binaries or 𝑛−1 binaries (the only two situations
that do not have at least 2 non-binaries). The number of stars needed to satisfy the condition
that the probability is > 0.99 of there being 2 non-binaries is the solution to

(0.6)𝑛 + 𝑛(0.6)𝑛−1(0.4) < (1 − 0.99).

Direct substitution shown that this is first satisfied for 𝑛 = 14.

13)F In a meteor search program, four photographic plates were exposed on each observing night and examined
for meteor trails. Over a one year period, 150 nights of data were accumulated with the following results:

No of plates with trails 0 1 2 3 4
No of nights 30 62 46 10 2

The number, 𝑟, of plates recording meteor trails on any given night is assumed to follow a binomial dis-
tribution. The minimum number is 0, the maximum is 4. By equating the sample mean value of 𝑟 for
the above observations with the expected value for a binomial distribution, estimate the parameter, 𝑝, the
probability of a single plate recording a meteor trail. {0.32}
Hence determine the predicted number of nights on which 𝑟 plates record trails under the binomial model
(𝑟 = 0,… , 4).

Solution to (13) Sample mean is

̂𝑟 = 0 × 30 + 1 × 62 + 2 × 46 + 3 × 10 + 4 × 2
150 = 1.28

The expectation value for a binomial distribution is 𝑛𝑝 (see previous question), so setting 𝑛𝑝 =
̂𝑟, with 𝑛 = 4 plates, we get �̂� = 0.32.
The predicted number of plates is just 𝑁(𝑟) = 150 × 𝑝(𝑟|�̂�), again with 𝑛 = 4. To the

nearest integer, 𝑁(0) = 32, 𝑁(1) = 60, 𝑁(2) = 43, 𝑁(3) = 13 and 𝑁(4) = 2.

14) The distribution of (natural) log distance of galaxies in a survey is found to be normal with mean 𝜇 and
variance 𝜍2. Derive the pdf, 𝑝(𝑟), of the galaxy distance, 𝑟, and determine the expected value and variance
of 𝑟.
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Solution to (14) Let 𝑙 = ln 𝑟. Then 𝑝(𝑟)| d𝑟| = 𝑝(𝑙)| d𝑙| and we are told that 𝑝(𝑙) is Normal.
By change of variable 𝑝(𝑟) is therefore Lognormal (see previous questions) and has the form

𝑝(𝑟) = 1
𝑟

1
√2𝜋𝜎

exp [−12 (
ln 𝑟 − 𝜇

𝜎 )
2
] .

The expectation value of 𝑟 is 𝐸(𝑟) = ∫∞
0 𝑟𝑝(𝑟) d𝑟. This can be most easily evaluated by making

the substitution 𝑟 = e𝑙 again to give

𝐸(e𝑙) = 1
√2𝜋𝜎

∫
∞

−∞
exp [− 1

2𝜎2 (𝑙 − 𝜇)2 + 𝑙] d𝑙.

This integral can be evaluated by completing the square to give

𝐸(𝑟) = 𝐸(e𝑙) = exp(𝜇 + 𝜎2/2).

The variance we get from var(𝑟) = 𝐸(𝑟2) − [𝐸(𝑟)]2. Again by completing the square the
first term can be integrated, giving a final answer of

var(𝑟) = exp(2𝜇 + 𝜎2) [exp(𝜎2) − 1] .

15) Let 𝑋 and 𝑌 be random variables. Find expressions for the following in terms of the variance and covari-
ance of𝑋 and𝑌.

(a) var(𝑎𝑋) and var(𝑎𝑌), where 𝑎 is a constant.
(b) cov(𝑎𝑋,𝑎𝑌), where 𝑎 is a constant.
(c) cov(𝑋,𝑋 +𝑌)
(d) cov(𝑋 +𝑌,𝑋 −𝑌)

Show that var(𝑋 +𝑌) = var(𝑋) + var(𝑌) + 2cov(𝑋,𝑌).
What property of the correlation coefficient, 𝜌, is indicated by your solution to (a) and (b)?

Solution to (15)

(a) var(𝑎𝑋) = 𝐸 [(𝑎𝑋)2]−[𝐸(𝑎𝑋)]2= 𝑎2𝐸(𝑋2)−𝑎2 [𝐸(𝑋)]2= 𝑎2 var(𝑋). Similarly var(𝑎𝑌) =
𝑎2 var(𝑌).

(b) cov(𝑎𝑋, 𝑎𝑌) = 𝐸(𝑎𝑋𝑎𝑌) − 𝐸(𝑎𝑋)𝐸(𝑎𝑌) = 𝑎2𝐸(𝑋𝑌) − 𝑎2𝐸(𝑋)𝐸(𝑌) = 𝑎2 cov(𝑋, 𝑌).

(c) By similar manipulations cov(𝑋, 𝑋 + 𝑌) = var(𝑋) + cov(𝑋, 𝑌),

(d) and cov(𝑋 + 𝑌,𝑋 − 𝑌) = var(𝑋) − var(𝑌).

Finally var(𝑋 +𝑌) = 𝐸 [(𝑋 + 𝑌)2]− [𝐸(𝑋 + 𝑌)]2 = 𝐸(𝑋2)+ 2𝐸(𝑋𝑌)+𝐸(𝑌2)− [𝐸(𝑋)]2−
2𝐸(𝑋)𝐸(𝑌) − [𝐸(𝑌)]2 = var(𝑋) + var(𝑌) + 2 cov(𝑋, 𝑌).

The solutions to 𝑎) and 𝑏) indicate that the correlation coefficients is independent of a
scale factor.

16)F The angular diameter, 𝜃, of the expanding photosphere of a type II supernova is observed simultaneously
with two different telescopes, A and B, at a number of epochs, with the following results (in arcsec):

A 101.8 102.8 111.0 113.5 114.4 114.8 114.5 116.2 120.2 123.5
B 99.2 103.1 114.8 111.6 110.1 110.3 110.7 114.3 117.6 119.2
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It is suspected that, due to incorrect flat-fielding, the results from telescope B differ systematically from
those of telescope A. The following model is constructed:

𝜃(𝐴)𝑖 = 𝛼 + 𝛽 𝜃(𝐵)𝑖 + 𝑒𝑖 (1)

where 𝛼 and 𝛽 are constants and the errors, 𝑒𝑖, are normally distributed with mean zero and dispersion,
𝜍 = 1.7.
Determine least-squares estimates for 𝛼 and 𝛽 with this model. Use the𝜒2 statistic to test the goodness of
fit of the model to the data at the 1% significance level.

Solution to (16) Using the least-squares formulas �̂� = −0.097 ± 10.3 and ̂𝛽 = 1.02 ± 0.09.
Now we evaluate

𝜒2 =
10
∑
𝑖=1

{
𝜃(𝐴)𝑖 − [�̂� + ̂𝛽𝜃(𝐵)𝑖]

1.7 }
2

= 20.52.

The critical value for 𝜒2 is 20.1 for the 1% significance level so the null hypothesis is (just!)
rejected at the 1% level.

17)B Observations made over several decades have resulted in a value of Hubble’s constant𝐻 with a (Bayesian)
probability

𝑝(𝐻|𝐼) = 1
√2𝜋

1
𝜍p

exp [−
(𝐻 −𝐻p)2

2𝜍2
p

] ,

where𝐻p and 𝜍p are constants and 𝐼 represents the relevant background information. A new technique
measures Hubble’s constant using an entirely different method, reporting a value𝐻d with uncertainty 𝜍d.
Taking the probability of this new data to be Gaussian, show that the updated value of𝐻 is described by

𝑝(𝐻|𝐻d, 𝐼) =
1

√2𝜋
1
𝛴 exp [−(𝐻 −𝑚)2

2𝛴2 ] ,

where
1
𝛴2 =

1
𝜍2
p
+ 1
𝜍2
d

and
𝑚 = 𝛴2 (𝐻d

𝜍2
d
+
𝐻p

𝜍2
p
) .

Comment on this result when 𝜍d ≪ 𝜍p.

Solution to (17) The question supplies us with a normalised prior for𝐻:

𝑝(𝐻|𝐼) = 1
√2𝜋

1
𝜎p

exp [−
(𝐻 − 𝐻p)2

2𝜎2p
] ,

The new data gives the likelihood of𝐻. We are told this is gaussian, so

𝑝(𝐻d|𝐻, 𝐼) =
1

√2𝜋
1
𝜎d

exp [−(𝐻 − 𝐻d)2
2𝜎2d

] .

By Bayes theorem, the posterior pdf is proportional to the product of these two and is therefore
also a Gaussian. Setting

𝐿 = −
(𝐻 − 𝐻p)2

2𝜎2p
− (𝐻 − 𝐻d)2

2𝜎2d
≡ −(𝐻 −𝑚)2

2𝛴2 ,

Our quest is simply to evaluate𝑚 and 𝛴. Differentiating 𝐿 twice wrt 𝐻:

𝜕2𝐿
𝜕𝐻2 ≡ − 1

𝛴2 = − 1
𝜎2p

− 1
𝜎2d
.
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The maximum of the pdf occurs at𝐻 = 𝑚. Differentiating once and setting to zero:

0 = −
(𝑚 − 𝐻p)

𝜎2p
− (𝑚 −𝐻d)

𝜎2d

𝑚( 1
𝜎2p

+ 1
𝜎2d
) = 𝐻d

𝜎2d
+
𝐻p

𝜎2p

𝑚 = 𝛴2 (𝐻d
𝜎2d

+
𝐻p

𝜎2p
) .

When 𝜎d ≪ 𝜎p our data is much better than our prior, so the result should be dominated
by the new information. The above expressions reduce to

𝛴 = 𝜎d ; 𝑚 = 𝐻d,
as one would expect in those circumstances.

18)B A model exists for a new type of X-ray source. If these sources are distributed homogeneously in the Uni-
verse (i.e., with constant mean density) show that the Bayesian probability density function (pdf) for the
radial distance, 𝑟, to a source is

𝑝(𝑟) ∝ 𝑟2.
The sources are thought to radiate isotropically so that the flux 𝐹 from a source at a distance 𝑟 is

𝐹 = 𝐿
4𝜋𝑟2 ,

where 𝐿 is the intrinsic luminosity of the source. Given that the pdf of 𝐿 for any particular source is 𝑝(𝐿)
show (by considering the joint pdf of 𝑟 and 𝐿) that the joint pdf of 𝐿 and 𝐹 for an observed source is

𝑝obs(𝐿,𝐹) ∝ 𝑝(𝐿)𝐿3/2𝐹−5/2.
You may use the general result that

𝑝(𝑦, 𝑧) = 𝑝(ᵆ, 𝑣)|||

𝜕𝑢
𝜕𝑦

𝜕𝑢
𝜕𝑧

𝜕𝑣
𝜕𝑦

𝜕𝑣
𝜕𝑧

|||.

To be observed, the flux from a source must be greater than 𝐹min. Assuming the pdf for source luminosity
is exponential, i.e.,

𝑝(𝐿) ∝ exp(−𝐿/𝐿0),
and given ∫∞

0 𝑥3/2e−𝑥 d𝑥 = 3√𝜋/4, determine the normalised pdf for 𝑝obs(𝐿,𝐹).
Show that𝑝(𝐿) ≠ 𝑝obs(𝐿) and comment on why this is so, physically. What is the most probable observed
luminosity?
Poisson statistics tells us that the probability of receiving𝑛 photons in a time 𝜏 s from a source of mean flux
𝐹 is

𝑃(𝑛|𝐹, 𝜏) = e−𝐹𝜏(𝐹𝜏)𝑛
𝑛! ,

where 𝐹 has units of photons per second. During an observation lasting one second, 6 photons are seen
from one of the new sources mentioned in part (b). Determine the un-normalised posterior pdf for the flux
of this source, independent of 𝐿.
What is the most probable flux of the source? Comment on why it is significantly less than 6 photons per
second?

Solution to (18) Homogeneity implies that the probability that a source is in any particular
volume of space is proportional to that volume. In spherical polar coordinates

𝑝(𝑟, 𝜃, 𝜙) d𝑟 d𝜃 d𝜙 ∝ 𝑟2 sin 𝜃 d𝑟 d𝜃 d𝜙.
Marginalising over 𝜃 and 𝜙 we get

𝑝(𝑟) =∬𝑝(𝑟, 𝜃, 𝜙|uniform) d𝜃 d𝜙

∝∬𝑟2 sin 𝜃 d𝜃 d𝜙

∝ 𝑟2.
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For any particular source, two parameters 𝑟 and 𝐿 are not related, in the sense that𝑝(𝐿|𝑟) =
𝑝(𝐿). We can therefore say that

𝑝(𝐿, 𝑟) = 𝑝(𝐿)𝑝(𝑟)
∝ 𝑟2𝑝(𝐿).

We now change the parameters to 𝐿 and 𝐹 using

𝑝obs(𝐿, 𝐹) = 𝑝(𝐿, 𝑟)|||

𝜕𝐿
𝜕𝐿

𝜕𝐿
𝜕𝐹

𝜕𝑟
𝜕𝐿

𝜕𝑟
𝜕𝐹

|||

= 𝑝(𝐿)𝑝(𝑟) ( 𝜕𝑟𝜕𝐹 − 𝜕𝐿
𝜕𝐹

𝜕𝑟
𝜕𝐿)

= 𝑝(𝐿)𝑝(𝑟).4𝜋𝑟
3

𝐿

∝ 𝑝(𝐿)
𝐿 (𝐿𝐹)

5/2

∝ 𝑝(𝐿)𝐿3/2𝐹−5/2.

Normalising:

∫
∞

𝐹min

𝐹−5/2 d𝐹 = 2
3𝐹

−3/2
min

and

∫
∞

0
𝐿3/2 exp(−𝐿/𝐿0) d𝐿 = 𝐿5/20 ∫

∞

0
𝑥3/2 exp(−𝑥) d𝑥

= 3𝜋1/2𝐿5/20
4 ,

so
𝑝obs(𝐿, 𝐹) =

2
√𝜋

𝐹3/2min𝐿
−5/2
0 𝐹−5/2𝐿3/2 exp(−𝐿/𝐿0).

𝑝obs(𝐿, 𝐹) factorises nicely, so the marginal pdf for 𝑝obs(𝐿, 𝐹) is simply

𝑝obs(𝐿) =
4

3√𝜋
𝐿−5/20 𝐿3/2 exp(−𝐿/𝐿0).

Clearly there is an extra 𝐿3/2 term in there, not present in 𝑝(𝐿). Taking logs

ln 𝑝obs(𝐿) =
3
2 ln 𝐿 −

𝐿
𝐿0

+ const,

and differentiating wrt 𝐿 we get a maximum in the pdf at at 𝐿 = 3𝐿0/2. The reason is that
we are now looking at the probability of 𝐿 in an observed source, and there are many more of
these far away, so it is more probable that we are seeing a relatively distant but (improbably)
luminous source rather than a close-by low luminosity source.

We use Bayes Theorem for this:

𝑝(𝐹|𝑛) = 𝑝(𝐹)𝑃(𝑛|𝐹)
𝑃(𝑛) ∝ 𝑝(𝐹)𝑃(𝑛|𝐹).

From part (c) we know that
𝑝obs(𝐿, 𝐹) ∝ 𝑝(𝐿)𝐿3/2𝐹−5/2,
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so (maginalising implicitly over 𝐿) 𝑝(𝐹) ∝ 𝐹−5/2. Therefore

𝑝(𝐹|𝑛) ∝ 𝐹−5/2. e
−𝐹𝐹𝑛
𝑛!

∝ 𝐹𝑛−5/2e−𝐹.

If 𝑛 = 6 then

𝑝(𝐹|𝑛) ∝ 𝐹7/2e−𝐹.

We want the value of 𝐹 at the maximum of the pdf, 𝐹mp.

𝑝(𝐹|𝑛) ∝ 𝐹7/2e−𝐹

ln 𝑝 = 7
2 ln𝐹 − 𝐹

d ln 𝑝
d𝐹 = 7

2𝐹mp
− 1 = 0

𝐹mp =
7
2.

We saw 6 photons in 1 second, so it would be reasonable at first to assume the flux of the
sourcewas about 6/s. Howevermost sources are far away and dim, so it turns out that it’smore
likely that this is a dim distant source, with a mean flux less than 6/s, which has generated a
larger than average number of photons in this particular second, than a close source behaving
nominally.
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