
AA12M Statistical Astronomy (STA)
problem sheet #2

This problem sheet covers Bayesian and frequentist methods for parameter estimation and
hypothesis testing. Bayesian questions are tagged with a little ‘B’, frequentist questions with
an ‘F’. Full solutions for all these problems will appear as the course progresses. Answers to
some problems are shown in curly brackets when appropriate.

1)B Explain how Bayes’ Theorem is used for parameter estimation in Bayesian Probability
Theory.
A telescope is constructed to look for gamma ray bursters (GRBs). Given that GRBs
can appear from any direction (i.e., are distributed isotropically on the sky) what is the
prior probability distribution that a GRB will be seen at a particular declination 𝛿 (hint:
consider the fraction of the sky at this declination)? If 𝜇 = sin 𝛿, show that the prior for
𝜇 is uniform for −1 < 𝜇 < 1.

2)B Briefly, what ismarginalisation in the context of Bayesian inference?
In a photon counting experiment we are told that, over a time interval 𝑇, exactly two
photons have struck our detector. Given no other information, write down and justify
the joint probability distribution function (pdf) for the two arrival times 𝑡1 and 𝑡2.
By sketching this pdf, or otherwise, show that the probability that they arrived within a
time 𝜏 of each other is

𝑃(𝜏) = 1 − (1 − 𝜏/𝑇)2.

Given the extra information that they did indeed arrive within a time 𝜏 of each other,
sketch the pdfs for the time:

(a) of the first arrival
(b) of the second arrival
(c) that a photon arrives.

3)B Use your favorite computing resource (Python, Matlab,WolframAlpha, …) to determine
the fraction of the probability contained within a (±)1, 2 and 3 𝜎 zone around the mean
of a Gaussian posterior probability distribution.

4)B From what you know, write down sensible prior probabilities/pdfs for the following
quantities:

• The number of sweets in a jar.
• The mass of Neptune.
• The radius of Neptune.

5)F The Central Limit Theorem states that the sum of 𝑁 random variables drawn from al-
most any distribution will itself be a random variable which, if 𝑁 is sufficiently large,
will be Normally distributed. Extend this idea to the product of 𝑁 random variables(all
> 0), and determine the distribution of this product (called the Lognormal distribution).
Why might the masses of bodies in the rings of Saturn have a Lognormal distribution?
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6)B Outline the reasoning behind ‘least-squares’ parameter estimation within a Bayesian
framework.
For a set of data, {𝑌 𝑘}, with associated error bars {𝜎𝑘}, taken at known ‘positions’ {𝑥𝑘}
derive the best slope (𝑚0) and intercept (𝑐0) for a straight line fit.

7)B 𝑁 observations of the flux density of a quasar, {𝑥𝑘}, are affected by interstellar scintilla-
tionwhich introducesGaussian errors of (unknown) variance𝜎2. Explainwhat ismeant
by the likelihood of these data, and show that, if the measurements are independent, the
likelihood is

𝑝({𝑥𝑘}|𝜇, 𝜎, 𝐼) = (𝜎√2𝜋)−𝑁 exp [− 1
2𝜎2

𝑁
∑
𝑘=1

(𝑥𝑘 − 𝜇)2] ,

where 𝜇 is the true flux density of the quasar.
Explain the importance of the joint posterior pdf of 𝜇 and 𝜎 for parameter estimation.
What is the meaning of themarginal posterior pdf for 𝜇 alone? Show that, if the priors
for 𝜇 and 𝜎 are uniform for values > 0 and zero otherwise, the marginal posterior pdf
for 𝜇 is

𝑝(𝜇|{𝑥𝑘}, 𝐼) ∝ ∫
∞

0
𝑡𝑁−2 exp [−𝑡

2

2
𝑁
∑
𝑘=1

(𝑥𝑘 − 𝜇)2] d𝑡,

where 𝑡 = 1/𝜎. Evaluate the un-normalised value of this,* given the standard result

∫
∞

0
𝑥𝑛 exp(−𝑎𝑥2) d𝑥 ∝ 𝑎−(𝑛+1)/2.

By examining the maximum of 𝐿 = ln [𝑝(𝜇|{𝑥𝑘}, 𝐼)], show that the best estimate for 𝜇 is

𝜇0 =
1
𝑁

𝑁
∑
𝑘=1

𝑥𝑘,

and that the uncertainly in this is 𝑆/√𝑁 where

𝑆2 = 1
𝑁 − 1

𝑁
∑
𝑘=1

(𝑥𝑘 − 𝜇0)2.

Comment on how this result compares to the situation where 𝜎 is known, as derived in
the notes.

8)B A spacecraft is sent to a moon of Saturn, and, using a penetrating probe, detects a liquid
sea under the surface at 1 atmosphere pressure and a temperature of −3 ∘C. However
the thermometer has a random fault, so that the temperature reading may differ from
the true temperature by as much as ±5 ∘C with uniform probability within that range.

(a) Assuming the liquid is water (background information 𝐼1), which is a liquid for
0 ∘C < 𝑇 < 100 ∘C,
(i) write down, anddraw, a sensible prior for the temperature of the liquid,𝑝(𝑇|𝐼1).
(ii) write down, the likelihood of the data, given the instrument’s troublesome

performance and sketch its variation with 𝑇.
(iii) compute, and draw, the normalised posterior pdf for the temperature.

*The answer you get is basically Student’s 𝑡 distribution, derived from Bayesian principles.
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(b) Now repeat the above analysis assuming the liquid is ethanol (background informa-
tion 𝐼2) which is liquid at one atmosphere between−80 ∘C and 80 ∘C, and comment
on the difference in the results.

(c) The calibration error is found to be such that subsequent readings have indepen-
dent errors within the range ±5 ∘C.
(i) By applying the central limit theorem determine, and sketch, the likelihood of

the average of 100 such readings.
(ii) Given that this average reading is −1.2 ∘C again calculate, and sketch, the pos-

terior pdfs under the hypotheses that the liquid is water or ethanol.
(d) (advanced) determine the relative odds that the liquid is water or ethanol following

the single measurement and the average measurement.

9)B An important topic in X-ray astronomy is the determination of the X-ray background
rate, 𝑏 (i.e., the rate of arrival of X-rays from the background sky).
An X-ray telescope observes a ‘blank’ area of sky and counts 𝑛 X-ray photons in a time
𝑇. The likelihood of this observation follows the Poisson distribution,

𝑝(𝑛|𝑏, 𝐼) = (𝑏𝑇)𝑛e−𝑏𝑇
𝑛! .

Taking 𝑏 to be a scale parameter, assign it a prior, 𝑝(𝑏|𝐼), and determine the normalised
posterior for 𝑏. You will need to use

∫
∞

0
𝑥𝑚e−𝑎𝑥 d𝑥 = 𝑚!

𝑎𝑚+1 (𝑎 > 0; 𝑚 = 0, 1, 2 …).

Show that the mean of this posterior is 𝑛/𝑇, and that its standard deviation is the mean
divided by√𝑛.
Repeat this analysis using a uniform prior for 𝑏. Do the two results differ substantially?

10)F The fraction, 𝑋 , of the surface of a star covered in starspots is modelled as a random
variable with pdf (with 𝑘 constant)

𝑝(𝑥) = 𝑘
√𝑥(1 − 𝑥)

, 0 < 𝑥 < 1

(a) Determine 𝑘 so that 𝑝(𝑥) is properly normalised. {1/𝜋}

(b) Find the expected fraction of the surface covered in starspots. {1/2}

(c) What is the probability that the fraction covered is less than 25%? {1/3}

11)B The redshift of a quasar is measured to be 𝑧1 with a standard deviation of 𝜎.

(a) Assuming the uncertainty in this data is Gaussian, explain why a uniform prior
probability distribution for 𝑧 implies a normalised posterior probability distribu-
tion for 𝑧 of

𝑝(𝑧|𝑧1) =
1

(2𝜋𝜎2)1/2 exp [−
(𝑧 − 𝑧1)2
2𝜎2 ]

(b) A second measurement, 𝑧2, also of standard deviation 𝜎, is made with the same
setup. Write down an expression for the likelihood of 𝑧 based solely in this second
measurement, 𝑝(𝑧2|𝑧), and hence show that the new posterior probability distribu-
tion is

𝑝(𝑧|𝑧1, 𝑧2) ∝
1

2𝜋𝜎2 exp [−
(𝑧 − 𝑧1)2 + (𝑧 − 𝑧2)2

2𝜎2 ]
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(c) Show that this can be written in the form

𝑝(𝑧|𝑧1, 𝑧2) ∝
1

2𝜋𝜎2 exp [−
𝐴(𝑧 − 𝑧m)2 + 𝑐

2𝜎2 ]

and evaluate𝐴, 𝑧m, and 𝑐. Hence show that𝑝(𝑧|𝑧1, 𝑧2) is alsoGaussianwith amean
of (𝑧1 + 𝑧2)/2 and a standard deviation of 𝜎/√2, commenting on these results.

(d) Usually, one might expect that the two measurements 𝑧1 and 𝑧2 would be within
about 𝜎 of each other, but on this occasion 𝑧1−𝑧2 = 10𝜎 . Sketch graphs of 𝑝(𝑧|𝑧1),
𝑝(𝑧|𝑧2) and 𝑝(𝑧|𝑧1, 𝑧2) for this situation, and give an interpretation of what may be
going on here. Why is the uncertainty in the final posterior so (relatively) small?

(e) Define the evidence (or ‘marginal likelihood’) for this dataset, and briefly describe
the role it plays in Bayesian parameter estimation. Show that the evidence in this
problem is proportional to exp [−𝑐/(2𝜎2)], and comment on how its value depends
on the magnitude of 𝑧1 − 𝑧2.

12)F Let 𝑝 denote the probability that a particular outcome will happen in any single experi-
ment (called the probability of a success). The probability, 𝑝(𝑟), of exactly 𝑟 successes in
𝑛 experiments is given by the binomial distribution:

𝑝(𝑟) = 𝑛!
𝑟!(𝑛 − 𝑟)!𝑝

𝑟(1 − 𝑝)𝑛−𝑟, 𝑟 = 0, 1, … , 𝑛

𝑝(𝑟) has mean 𝜇 = 𝑛𝑝 and variance 𝜎2 = 𝑛𝑝(1 − 𝑝).
Suppose that 60% of the stars in the Hubble Space Telescope guide star catalogue are
binaries, use a binomial distribution model to calculate the probability that a random
sample of 5 stars from the guide star catalogue contains a) 0, b) 1, c) 2, d) 3, e) 4, f) 5
binary stars.
How large a sample should be chosen in order that the probability of the sample con-
taining at least two non-binary stars is greater than 99%? {14}

13)F In a meteor search program, four photographic plates were exposed on each observing
night and examined for meteor trails. Over a one year period, 150 nights of data were
accumulated with the following results:

No of plates with trails 0 1 2 3 4
No of nights 30 62 46 10 2

The number, 𝑟, of plates recording meteor trails on any given night is assumed to follow
a binomial distribution. Theminimum number is 0, the maximum is 4. By equating the
sample mean value of 𝑟 for the above observations with the expected value for a bino-
mial distribution, estimate the parameter, 𝑝, the probability of a single plate recording
a meteor trail. {0.32}

Hence determine the predicted number of nights on which 𝑟 plates record trails under
the binomial model (𝑟 = 0, … , 4).

14) The distribution of (natural) log distance of galaxies in a survey is found to be normal
with mean 𝜇 and variance 𝜎2. Derive the pdf, 𝑝(𝑟), of the galaxy distance, 𝑟, and deter-
mine the expected value and variance of 𝑟.

15) Let 𝑋 and 𝑌 be random variables. Find expressions for the following in terms of the
variance and covariance of 𝑋 and 𝑌 .
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(a) var(𝑎𝑋) and var(𝑎𝑌), where 𝑎 is a constant.
(b) cov(𝑎𝑋, 𝑎𝑌), where 𝑎 is a constant.
(c) cov(𝑋, 𝑋 + 𝑌)
(d) cov(𝑋 + 𝑌, 𝑋 − 𝑌)

Show that var(𝑋 + 𝑌) = var(𝑋) + var(𝑌) + 2 cov(𝑋, 𝑌).
What property of the correlation coefficient, 𝜌, is indicated by your solution to (a) and
(b)?

16)F The angular diameter, 𝜃, of the expanding photosphere of a type II supernova is observed
simultaneously with two different telescopes, A and B, at a number of epochs, with the
following results (in arcsec):

A 101.8 102.8 111.0 113.5 114.4 114.8 114.5 116.2 120.2 123.5
B 99.2 103.1 114.8 111.6 110.1 110.3 110.7 114.3 117.6 119.2

It is suspected that, due to incorrect flat-fielding, the results from telescope B differ sys-
tematically from those of telescope A. The following model is constructed:

𝜃(𝐴)𝑖 = 𝛼 + 𝛽 𝜃(𝐵)𝑖 + 𝑒𝑖 (1)

where 𝛼 and 𝛽 are constants and the errors, 𝑒𝑖, are normally distributed with mean zero
and dispersion, 𝜎 = 1.7.
Determine least-squares estimates for 𝛼 and 𝛽 with this model. Use the 𝜒2 statistic to
test the goodness of fit of the model to the data at the 1% significance level.

17)B Observations made over several decades have resulted in a value of Hubble’s constant
𝐻 with a (Bayesian) probability

𝑝(𝐻|𝐼) = 1
√2𝜋

1
𝜎p

exp [−
(𝐻 − 𝐻p)2

2𝜎2p
] ,

where 𝐻p and 𝜎p are constants and 𝐼 represents the relevant background information.
A new technique measures Hubble’s constant using an entirely different method, re-
porting a value 𝐻d with uncertainty 𝜎d. Taking the probability of this new data to be
Gaussian, show that the updated value of 𝐻 is described by

𝑝(𝐻|𝐻d, 𝐼) =
1

√2𝜋
1
𝛴 exp [−(𝐻 −𝑚)2

2𝛴2 ] ,

where 1
𝛴2 =

1
𝜎2p

+ 1
𝜎2d

and
𝑚 = 𝛴2 (𝐻d

𝜎2d
+
𝐻p

𝜎2p
) .

Comment on this result when 𝜎d ≪ 𝜎p.

18)B A model exists for a new type of X-ray source. If these sources are distributed homo-
geneously in the Universe (i.e., with constant mean density) show that the Bayesian
probability density function (pdf) for the radial distance, 𝑟, to a source is

𝑝(𝑟) ∝ 𝑟2.
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The sources are thought to radiate isotropically so that the flux 𝐹 from a source at a
distance 𝑟 is

𝐹 = 𝐿
4𝜋𝑟2 ,

where𝐿 is the intrinsic luminosity of the source. Given that the pdf of𝐿 for any particular
source is 𝑝(𝐿) show (by considering the joint pdf of 𝑟 and 𝐿) that the joint pdf of 𝐿 and
𝐹 for an observed source is

𝑝obs(𝐿, 𝐹) ∝ 𝑝(𝐿)𝐿3/2𝐹−5/2.

You may use the general result that

𝑝(𝑦, 𝑧) = 𝑝(𝑢, 𝑣)
|
|
|
|

𝜕𝑢
𝜕𝑦

𝜕𝑢
𝜕𝑧

𝜕𝑣
𝜕𝑦

𝜕𝑣
𝜕𝑧

|
|
|
|
.

To be observed, the flux from a source must be greater than 𝐹min. Assuming the pdf for
source luminosity is exponential, i.e.,

𝑝(𝐿) ∝ exp(−𝐿/𝐿0),

and given ∫∞
0 𝑥3/2e−𝑥 d𝑥 = 3√𝜋/4, determine the normalised pdf for 𝑝obs(𝐿, 𝐹).

Show that 𝑝(𝐿) ≠ 𝑝obs(𝐿) and comment on why this is so, physically. What is the most
probable observed luminosity?

Poisson statistics tells us that the probability of receiving 𝑛 photons in a time 𝜏 s from a
source of mean flux 𝐹 is

𝑃(𝑛|𝐹, 𝜏) = e−𝐹𝜏(𝐹𝜏)𝑛
𝑛! ,

where 𝐹 has units of photons per second. During an observation lasting one second, 6
photons are seen from one of the new sources mentioned in part (b). Determine the
un-normalised posterior pdf for the flux of this source, independent of 𝐿.
What is the most probable flux of the source? Comment on why it is significantly less
than 6 photons per second?

19)B The probability of detecting𝑁 galaxies in a patch of sky of solid angle𝛺 can bemodelled
as a Poisson distribution,

𝑃(𝑁|𝜆) = 𝜆𝑁e−𝜆
𝑁! ,

where 𝜆 is a constant, proportional to 𝛺 (i.e. 𝜆 = 𝑘𝛺). What important assumptions
have we made in this model?

Show that the mean number of galaxies in the patch equals 𝜆, and hence that the (con-
stant) probability of finding a galaxy in differential solid angle d𝛺 is 𝑘 d𝛺.
Show that if 𝜆 is an integer, it is equally probable that there are 𝜆 and 𝜆 − 1 galaxies in
the patch, and discuss briefly why only one of these equally probable outcomes is the
‘expectation value’ for 𝑁.
Taking one of the galaxies as the centre point, determine the probability that there are
no galaxies around it in a disc of solid angle 𝜔 and hence determine the probability
distribution for the angular distance 𝛼 to its nearest neighbour. You may assume the
angles are small, so that the solid angle of a disc of radius 𝛼 is 𝜔 = 𝜋𝛼2.
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20)B We can determine the distance 𝑟 to a source of known luminosity 𝐿 from its flux 𝐹 at the
Earth using the inverse-square law,

𝐹 = 𝐿
4𝜋𝑟2 .

An astronomical object of known luminosity is called a ‘standard candle’.
An instrument makes a measurement 𝐷 of the flux from a standard candle, subject to
Gaussian errors of variance 𝜎2. The (Bayesian) probability distribution of this measure-
ment is

𝑝(𝐷|𝐹) ∝ exp [−(𝐷 − 𝐹)2
2𝜎2 ] .

Use Bayes’ Theorem to determine the posterior probability distribution for the distance
to the source, assuming that such sources are distributed in space with a uniform prob-
ability.
Discuss why this posterior is insensitive to the choice of prior when the signal-to-noise
ratio 𝛾 (= 𝐷/𝜎) is sufficiently large and show that under these circumstances the poste-
rior is approximately

𝑝(𝑟|𝐷) ∝ 𝑟2 exp [−2𝐷
2(𝑟 − 𝑟0)2
𝜎2𝑟20

] ,

where 𝑟0 satisfies 4𝜋𝐷𝑟20 = 𝐿. Estimate the ‘1-sigma’ uncertainty in the estimate of 𝑟 as
a function of 𝛾.
Hubble’s constant 𝐻 relates the velocity 𝑣 of a source (due to the expansion of the Uni-
verse) to its distance:

𝑣 = 𝐻𝑟.
If 𝑣 is known exactly, determine the pdf for 𝐻 using the above posterior for 𝑟.
Generally, the value of 𝑣 will have some uncertainty, 𝜎𝑣, so that

𝑝(𝑣) ∝ exp [−(𝑣 − 𝑣0)2
2𝜎2𝑣

] .

Starting with the joint probability of 𝐻 and 𝑣, estimate (using suitable approximations
for the integrals of sharply-peaked functions) the new standard width of 𝑝(𝐻|𝐷) when
𝛾 and 𝑣/𝜎𝑣 are large.
You may use the result

∫
∞

−∞
exp [−(𝑥 − 𝑥1)2

2𝜎21
− (𝑥 − 𝑥2)2

2𝜎22
] d𝑥 = (2𝜋𝜎

2
1𝜎22

𝜎21 + 𝜎22
)
1/2

exp [− (𝑥1 − 𝑥2)2
2(𝜎21 + 𝜎22)

] .
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