
Quick facts #3: Poisson noise

1 Introduction

The idea ofnoiseappears wheneverwe consider the accuracy
(or sensitivity) of a measurement. We find quite generally
that repeated measurements of an assumed property of a sys-
tem (such as its length or mass) tend to give slightly different
results. This is always true at some level. For example, if
we were to measure

the angular size of the Sun from the Earth our measure-
ment would be affected by atmospheric shimmer. If we were
to go above the atmosphere, we would see that the solar sur-
face is not smooth, and that the angular diameter changes in
time.

Any unpredictable variation in the measured value of a
quantity is callednoise. We can usually improve the accu-
racy of our measurement if we know something about the
statistics of the noise. For example, if the noise is additive
and has a mean of zero, averaging successive measurements
will help reduce it.

2 Signal-to-noise ratio

It is useful to define a number that represents the quality of
a measurement. Sometimes we quote measurement with an
associated error, such asS= 14.8±0.4Jy,or we could quote
the error as a percentage of the signal (S = 14.8 Jy±2.7%).
It’s common to define asignal-to-noise ratio(SNR) for the
measurement, as

SNR=
expected signal strength

expected noise strength
.

In our example, the SNR would be 14.8/0.4 = 37. Clearly,
a high value of SNR is good. Measurements with SNRs
less than 2 contain very little information on what we are
trying to measure. This system is used widely. For example,
cassette tapes can reproduce sound with a SNR up to about
107, whereas CDs give a SNR greater than 109.

Thedynamic rangeof an instrument is its ability to mea-
sure both weak and strong signals, and is closely related to
the maximum signal-to-noise ratio it can deliver.

3 Poisson statistics

In astronomy, we are often interested in estimating flux den-
sity by measuring the average arrival rate of photons from a
source. Although these photons may be expected to arrive
at a constantaveragerate ofr photons per unit time inter-
val, they cannot be expected to arrive at regular intervals.
In any particular interval of time,τ , the number of photons
expectedis 〈N〉 = r τ , but the number actually received will

probably not equal exactly this. Photons are not aware of
each other – they each arrive with some fixed probability per
unit time without reference to the number that have already
arrived. Such arrivals are said to beuncorrelated, and their
statistics are particularly straightforward.
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Figure 1: Poisson distributions for three mean arrival rates.

It turns out that if we expect to detect〈N〉 photons on
average over many observing runs, we can expect to receive
aboutN = 〈N〉 ±

√
〈N〉 during any particular run. The

probability of detecting exactlyN photons is in fact

p(N) = exp(−〈N〉)
〈N〉N

N
.

Of course we can rewrite this in terms of the arrival rate,r
and the observing time,τ :

p(N) = exp(−r τ )
(r τ )N

N
.

This is called thePoisson distribution(see Figure 1), and can
be derived from fundamental probability theory (see next
section). Its most important property is that the standard
deviation of the distribution1 equals the square root of the

1‘Standard deviation’,σ , is a measure of the statistical spread of a distri-
bution, and characterises the variation between measurements. It is defined
asσ = (〈N2〉 − 〈N〉2)1/2. σ2 is called thevarianceof the distribution.
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mean of the distribution, i.e.,

σ =
√

〈N〉 =
√

r τ .

If we just make one measurement, and receiveN photons,
then our best estimate of〈N〉 is N. If we associateσ with
the noise in the measurement, then our best estimate of our
error is

√
N.

This kind of noise is variously called ‘Poisson noise’,
‘shot noise’, ‘self noise’ or ‘photon noise’. It is a direct
consequence of the statistics of photon-counting. The fun-
damental result is that, if we base a measurement on the
arrival of N photons, our SNR cannot be greater than

SNR=
N

√
N

=
√

N.

Other noise sources may be present, and they can only reduce
this SNR further. The rule is that we add the squares of
the standard deviations, called thevariances, of the various
noise processes to get the overall variance, and therefore the
overall standard deviation.

In the limit of very largeN, the Poisson distribution ap-
proaches the (perhaps more familiar) Gaussian distribution.
This is a less awkward expression for largeN, but the same
rules apply. Quite generally, the SNR of a measurement
increases as

√
N =

√
r τ , i.e., as the square root of the ob-

serving time. Even in radio astronomy, where we are no
longer counting photons, the SNR∝

√
1ντ where1ν is

the observing bandwidth.2

4 Deriving the Poisson distribution

This section is not examinable, but demonstrates how the
Poisson distribution arises.

We expect, on average,〈N〉 = r τ photons to be detected
during our observing periodτ . Photons will arrive at random
times during this period, but we can imagine dividingτ into
a very large number of sub-intervals (M of them) which
are sufficiently short that they either contain one photon or
no photons. The probability,p1, that any one sub-interval
contains a photon is the expected number of photons divided
by the number of sub-intervals, i.e.,

p1 =
r τ

M
.

The probability,p0, that the sub-interval does not contain a
photon is simply

p0 = 1 − p1,

because one or other outcome is certain3 (p0 + p1 = 1).

2You can think of1ντ as the number of independent measurements of
the electric field than can be made in the observing time – the equivalent of
N when we are photon counting.

3We have assumed thatM is so big that the chances of two photons
arriving in the same sub-interval is zero.

The probability of, say, the firstN sub-intervals con-
taining a photon and the remainingM − N being empty is
pN

1 pM−N
0 . This is just one way in whichN photons can be

distributed in the interval. There are many other ways. In
fact there areM ways to insert the first photon,M − 1 ways
to insert the second (avoiding the first),M −2 ways to insert
the third and so on. There are thereforeM/(M − N) ways to
insert all the photons. But we have over-counted. We have
included identical configurations that have been arrived at
merely by inserting photons in different orders. There are
N ways to do this (the number of rearrangements ofN ob-
jects), so the final number of arrangements ofN photons in
M sub-intervals is

M CN =
M

(M − N) N
.

Each of these configurations has an equal probability of hap-
pening (= pN

1 pM−N
0 ), so the overallprobabilityof receiving

N photons is

p(N) =
M

(M − N) N
pN

1 pM−N
0 .

This is known as thebinomialdistribution, and is valid for
all values ofM. However, we have assumed thatM is very
large, so we can consider its limiting form asM → ∞ (and
therefore asp1 → 0 with Mp1 = r τ ). Without approxima-
tion, we can rewrite the above equation as

p(N) =
(r τ )N

N
pM−N

0 f (M),

where

f (M) =
M(M − 1)(M − 2) . . . (M − N + 1)

M N
.

As M → ∞, f (M) approaches unity, asN becomes triv-
ially small compared withM. We can also say that

pM−N
0 = (1 − p1)

M−N

=
(

1 −
r τ

M

)M−N

=
(1 − r τ/M)M

(1 − r τ/M)N
.

As M → ∞ the numerator in the above expression ap-
proaches exp(−r τ ) and the denominator approaches unity.
The final expression forp(N) in the limit we require of large
M is therefore

p(N) = exp(−r τ )
(r τ )N

N
,

which is our expression for the Poisson distribution.
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