Quick facts #3. Poisson noise

1 Introduction probably not equal exactly this. Photons are not aware of
each other —they each arrive with some fixed probability per

The idea ohoiseappears wheneverwe consider the accurd‘b&'t time without reference to the number that have already
rived. Such arrivals are said to becorrelated and their

(or sensitivity) of a measurement. We find quite generaffy’ " =" . )
that repeated measurements of an assumed property of a%,g_stlcs are particularly straightforward.
tem (such as its length or mass) tend to give slightly difiere

results. This is always true at some level. For example, if 0.3
we were to measure

the angular size of the Sun from the Earth our measure-
L 0.2
mentwould be affected by atmospheric shimmer. If we were
to go above the atmosphere, we would see that the solar sur-
face is not smooth, and that the angular diameter changes in 0.1
time. -

Any unpredictable variation in the measured value of a 0 =S
guantity is callechoise We can usually improve the accu-
racy of our measurement if we know something about the
statistics of the noise. For example, if the noise is adelitiv -
and has a mean of zero, averaging successive measurements 0.1
will help reduce it. ' —

N

2 Signal-to-noiseratio 0

It is useful to define a number that represents the quality of (N) =7.8
a measurement. Sometimes we quote measurement with an 0.1
associated error, such8s= 14.8+0.4 Jy, or we could quote
the error as a percentage of the sigré 14.8 Jy+ 2.7%).
It's common to define aignal-to-noise ratiqSNR) for the
measurement, as

P(N)

0
SNR— expected signal strength 0123456782910
~ expected noise strength N

In our example, the SNR would be B840.4 = 37. Clearly, ) S )
a high value of SNR is good. Measurements with SNidgure 1: Poisson distributions for three mean arrivalgate

less than 2 contain very little information on what we are .
It turns out that if we expect to dete@) photons on

trying to measure. This system is used widely. For example, b . t .
cassette tapes can reproduce sound with a SNR up to a gf29€ Over many observing runs, we can expect to receive
107, whereas CDs give a SNR greater thafl.10 aboutN = {N) £ +/{N} during any particular run. The
' probability of detecting exactliX photons is in fact
Thedynamic rangef an instrument s its ability to mea- N
i i (N)
sure both weak and strong signals, and is closely related to p(N) = exp(—(N)) .
the maximum signal-to-noise ratio it can deliver. N
Of course we can rewrite this in terms of the arrival rate,
and the observing time;

3 Poisson statistics ro)N
p(N) = exp(—rr) N

In astronomy, we are often interested in estimating flux deFhis is called théoisson distributiorfsee Figure 1), and can
sity by measuring the average arrival rate of photons fronba derived from fundamental probability theory (see next
source. Although these photons may be expected to arseetion). Its most important property is that the standard
at a constanaveragerate ofr photons per unit time inter- deviation of the distributiohequals the square root of the
val, they cannot be eXpeCted to arrive at regular Intervalsl"Standard deviation'g, is a measure of the statistical spread of a distri-

In any particular interval of timer, the number of phmon_sbution, and characterises the variation between measutsnieis defined
expecteds (N) = r t, but the number actually received willaso = ((N2) — (N)}2)1/2, 52 is called thevarianceof the distribution.




2 A2 Observational Astrophysics — Poisson noise

mean of the distribution, i.e., The probability of, say, the firsN sub-intervals con-
taining a photon and the remainifg — N being empty is
o =(N) =+t pN p¥=N. This is just one way in whichN photons can be

) distributed in the interval. There are many other ways. In
If we just make one measurement, and recévphotons, fact there aral ways to insert the first photoh) — 1 ways
then our best estimate ¢N) is N. If we associate with 5 jnsert the second (avoiding the firdt),— 2 ways to insert
the noise in the measurement, then our best estimate of @ithird and so on. There are therefdtg(M — N) ways to
errorisv/'N. insert all the photons. But we have over-counted. We have
‘shot noise’, ‘self noise’ or ‘photon noise’. It is a direcnerely by inserting photons in different orders. There are
consequence of the statistics of photon-counting. The fud-ways to do this (the number of rearrangementslasb-
damental result is that, if we base a measurement on J¢S), SO the final number of arrangement#\gphotons in
arrival of N photons, our SNR cannot be greater than M sub-intervals is
M
N CN= ——
SNR= — = v/N. M Mo NN
N M=
Other noise sources may be present, and they canonlyre
this SNR further. The rule is that we add the squares Q

N AM—N

Egach of these configurations has an equal probability of hap-
%ng € p; by ), sothe overalprobabilityof receiving

L . . hotons is
the standard deviations, called th&riances of the various P
noise processes to get the overall variance, and therdéfere t N _M_N
overall standard deviation. P(N) = M-N)N P1 Py -

In the limit of very largeN, the _EO|sson d|s_tr|bupon_ 4P This is known as theinomial distribution, and is valid for
proaches the (perhaps more familiar) Gaussian d|str|but|3II values ofM. However, we have assumed thatis very
This is a less awkward expression for lafgebut the same large, so we can consider its limiting form s — oo (and
rules apply. Quite generally, the SNR of a measuremenL ofore a1 — Owith Mp; = rt). Without approxima-
increases a§/N = Iz, i.e., as the square root of the ob5on we can rewrite the above equation as
serving time. Even in radio astronomy, where we are no '

longer counting photons, the SN& +/Avt whereAv is ro)N MN
the observing bandwidth. P(N) = pp  f(M),
where

4 Deriving the Poisson distribution cy - MM =DM -2)...(M-N+1)

(M) = it :
This section is not examinable, but demonstrates how eM — oo, f(M) approaches unity, as becomes triv-
Poisson distribution arises. ially small compared wittM. We can also say that

We expect, on averagé\) = r t photons to be detected M-N _ (1 _ pM-N
during our observing period Photons will arrive atrandom Po - P1
times during this period, but we can imagine dividinanto _ (1 _ r_f) M=N
a very large number of sub-intervalM(of them) which M
are sufficiently short that they either contain one photon or A= rr/M)M
no photons. The probabilityy;, that any one sub-interval T (A—rt/M)NT
contains a photon is the expected number of photons divided ) )
by the number of sub-intervals, i.e., As M — oo the numerator in th_e above expression ap-
proaches ex@-r r) and the denominator approaches unity.
pL = rz The final expression fgp(N) in the limit we require of large
1 = . .
M M is therefore
The probability,pp, that the sub-interval does not contain a roN
photon is simply P(N) = exp(—r1) N
po=1-p1,

) ] which is our expression for the Poisson distribution.
because one or other outcome is cerdim + p1 = 1).

2You can think ofAvt as the number of independent measurements of G.w.
the electric field than can be made in the observing time —dh&valent of 2009
N when we are photon counting.

SWe have assumed thall is so big that the chances of two photons
arriving in the same sub-interval is zero.



