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4.   Sensitivity and noise
We define:

the sensitivity of an instrument or detector  as the smallest signal 
that it can measure which is clearly not  ‘noise’ . 

(noise =  random signal from some other source).  We can measure the 
reliability of an observation via its  signal-to-noise ratio (SNR):

Generally, we don’t trust observations unless the SNR is at least 3 
(or preferably much greater).

Sometimes the signal might still be very weak, compared to a 
(removable) background.

levelnoiseexpected
levelsignalexpected

SNR =
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The effect of signal-to-noise ratio
SNR = 0.5 SNR = 1 SNR = 2

SNR = 4 SNR = 8 SNR = 16
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Pulsars – the 4 Acre Array
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Discovery of pulsars
• First observations of pulses from a pulsar
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Here we have a signal, S, which is very weak compared 
to the background, B (as might be the case when 
observing, say, a star or planet at twilight), but is easily 
detected after the background has been subtracted 
because the SNR is large (i.e., S is large compared with 
N).  

1SNR >>
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Here the signal, the background and the noise have 
comparable sizes. This makes it difficult to estimate the 
amount of background to subtract and to know whether 
there is a signal there at all. The existence of any signal 
is clearly doubtful. 

1~SNR
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Poisson statistics
• Astronomical observations often involve counting photons.  

However, the number of photons arriving at our telescope from a 
given source in a fixed time interval of time will fluctuate.

• We can treat the arrival rate of photons statistically,  which means 
that we can calculate the range of numbers of photons which we 
expect to arrive in a given time interval.

• We make certain assumptions (axioms):

• If our observed photons satisfy these axioms, then the arrival 
numbers follow a Poisson distribution.

1. Photons arrive independently in time

2. The average photon arrival rate is a constant
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• Suppose the (assumed constant) mean photon arrival 

rate is R photons per second.

• If we observe for an exposure time τ seconds, then 

we expect to receive Rτ photons in that time.

• We refer to this as the  expectation value of the 

number of photons, written as

τRNNE ==)( (4.1)
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• If we made a series of observations, each of time τ, we 

wouldn’t expect to receive exactly       photons every 

time,  but the average number of counts should equal

(in fact this is how we can estimate the value of the rate  R)

τRN =

N

• Given the two Poisson axioms, we can show that the 

probability of receiving N photons in time τ is given by

( )
!

)(
N

eRNp
RN ττ −

= (4.2)
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RN ττ −

=

N

)(Np

Poisson statistics
5.0=τR

0.1=τR

0.5=τR

As       increases, the shape of the Poisson distribution becomes more 
symmetrical  (it tends to a Normal, or Gaussian, distribution).

τR
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We have  already defined the expectation value as               
We could confirm that this is consistent with the Poisson 
distribution using  eq. (4.2), though we won’t (it is!).

We can also define the variance of N,  which is a measure of 
the spread in the distribution:

We can think of the variance as the mean squared-deviation 
of N from <N>.

Poisson statistics
τRNE =)(

( ) [ ]{ }22 )(var NENEN −==σ
(4.3)
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For a Poisson distribution, the variance of N can be shown to be

which is the same as the mean. The standard deviation of N is defined 
as

In practice we usually only observe for one period of (say)         
seconds, during which time we receive (say) a count of        photons.
We can therefore estimate the arrival rate as

Poisson statistics

τRN =)(var (4.4)

τσ RN == )var(

τ
obsN

τ
obsˆ NR =

(4.5)

(4.6)
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obsobs NN ±

We take        as our ‘best’ estimate for          with error

i.e., we quote our experimental estimate for the mean 
number count of photons in time interval       as

Poisson statistics

obsN τN

obsNN =σ

τ

(4.7)
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Usually there are several sources of noise in our observation, each 
with a different variance.

Probability theory tells us that, if the sources of noise are all 
independent,  we can get the total noise variance by adding 
together the individual variances:

Sources of Poisson noise:

1)    fluctuations in photon count from the sky

2)   dark current:  thermal fluctuations in a CCD 

Adding noise

2
other

2
Poisson

2
total σσσ += (4.8)
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Suppose we observe a point source, of flux density     , through a 
telescope with collecting area      for time    , in bandwidth  
centred on     .

The total energy collected by the detector (ignoring any losses) is

so the number of photons collected is  

Noise and telescope / detector design
νS

A τ νΔ
0ν

τνν Δ= ASE tot (4.9)

0
tot ν

τνν

h
ASN Δ

≈ (4.10)
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Correcting for combined quantum efficiency of telescope and detector

Thus                                  and

So when the noise is dominated by the counting statistics of photons, 
the sensitivity of a telescope only increases as the square root of its 
aperture.

Noise and telescope / detector design

0
tot ν

τνη ν

h
ASN Δ

= (4.11)

Fraction of incident photons that produce 
a response in the detector

totPoisson N=σ ( ) 2/1SNR τνΔ∝ A

(4.12)
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Noise and telescope / detector design

In a radio astronomy the noise is often dominated by 
noise in the receiver electronics.

So when the noise is dominated by detector electronics, 
the sensitivity of the telescope increases in proportion to 
its aperture and the sensitivity of such a telescope goes as

A
A

A

∝

∝∝

SNR
 oft independen is noise

energy collectedsignal

( ) 2/1SNR τνΔ∝ A
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This is not necessarily true if we are 
observing a source which emits only 
over a narrow frequency range – e.g. a 
spectral line.

Increasing        beyond the line width 
will increase the amount of noise (from 
the background continuum) without 
further increasing the amount of signal 
(from the line).

Eq. (4.12) suggests that we can increase the signal-to-noise-ratio by 
increasing the bandwidth of our observation.

Line sources

νΔ

frequency

in
te

ns
ity

continuum

emission line

line width



19

The 2-D image of a faint galaxy observed by a CCD covers 50 pixels.  
For an exposure of 5 seconds a total of 104 photo-electrons are 
recorded by the CCD from these pixels.  An adjacent section of the 
CCD, covering 2500 pixels, records the background sky count. During 
the same exposure time a total of 105 photo-electrons are recorded 
from this adjacent section.  Show that, after subtracting the 
background sky count, the estimate of the signal-to-noise ratio for 
the detecting this galaxy is 73. 

Calculate the length of exposure required to increase the signal-to- 
noise ratio to 100.

Example
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Solution:

First we need to calculate the background level, answering the question “how 
many of the counts in the original 50-pixel image are due to the 
background?”. We are told that 2500 background pixels have generated 105 

counts.  This can be thought of as the sum of fifty 50-pixel patches, so our 
estimate for the background in one patch is just 105/50 = 2000. 

Now for the uncertainty in this: as stated in equation (4.8), if we have several 
independent contributions to the overall noise we simply add the variances of 
the contributions to get the total variance. The variance in our estimate of the 
background over 2500 pixels is simply 105 (assuming Poisson statistics), so the 
variance for each of the patches is, again, 105/50=2000. Our standard 
deviation (i.e., our uncertainty in the background counts) is therefore the 
square root of 2000 which is 44.7.

So our estimate for the background count for a 50-pixel patch is

Nb = 2000 +/- 44.7 
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Solution (cont):

Our total count (signal + noise) in the galaxy region is 104, so we can estimate 
the number of counts from the galaxy alone as

Ng = Ntot -Nb = 10000-2000 = 8000.

What about the uncertainty in this (i.e., the noise in our measurement)? The 
variance of  Ng is the SUM of the variances of Ntot and Nb , i.e.

var[Ng ] = var[Ntot ] + var[Nb ] = 10000 + 2000 = 12000,

and our noise is the square root of this, which is 109.5.  So we can say that

Ng = 8000 +/- 109.5,

and the signal-to-noise ratio is 8000/109.5 = 73 after 5 s of observation.

SNR increases as the square root of the observing time, so to get an SNR of 
100 we need to observe for a total of 5x(100/73)2 = 9.4 seconds.
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