A1l Dynamical Astronomy

Proof of Kepler’s laws from Newtonian dynamics

It would be a pity to have a course on dynamical as-
tronomy and not at least see a proof of Kepler’s laws
from Newton’s laws of motion and gravitation. Im-
portantly, these proofs are not examinable! They
are presented here purely to satisfy curiosity and for
your entertainment.

KEPLER’S FIRST LAW

K1: A planet orbits the Sun in an ellipse, with the Sun
at one focus of the ellipse. Take a mass m in a general

Figure 1: The geometry used in the proof.

elliptical orbit around a much more massive body M.
When the separation of the masses is r the total en-
ergy of the orbit is
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where v is the speed of the orbiting mass and G the
constant of gravitation. The velocity of m has two
components: a radial component equal to dr/dt (writ-
ten 7) and a component perpendicular to r which is
the ‘circular’ component of the velocity, equal to row
where w (= 6) is the instantaneous angular velocity
of the body, with 6 as shown in Fig. 1. Because these
components are orthogonal, the square of the total
velocity equals the sum of the squares of these com-
ponents. We can now write this energy equation in
polar coordinates:
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Similarly, we can write the angular momentum of m
as

L = mr?0, (3)
as r@ is the component of v perpendicular to . Now
make the substitution p = 1/r, so that 6 = Lp?/m.

We can evaluate 9 as
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Rearranging Eqn. (2) we can see that 7 is
2= % +2GMp — rfl—zzpz. (8)

Now a further manipulation. We make the substitu-
tions
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Clearly, both r, and e are constants. We choose them
in this way so that our answer is immediately recog-
nisable as an ellipse—it is not an obvious substitution
at this stage! After a little manipulation, Eqn. (8) can
be written as
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Substituting this into Eqn. (7) we get
6=— f ! do (12
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This can be rearranged to give
r =1,/(1+ecosb), (14)

which is the equation of an ellipse in polar coordi-
nates, with the origin at a focus. We can now identify
Iy as the semi-latus rectum of the ellipse and e as its
eccentricity.



A1l Dynamical Astronomy

KEPLER’S SECOND LAW

Let’s now prove KiI: The line joining a planet to
the Sun sweeps out equal areas in equal intervals of
time. The proof of K11 highlights the generality of the
‘sweeping out area’ rule for motion under any central
force.

Figure 2: The area, dA, swept out in a time dt by r.

In a time df the planet will move by a small
amount dr. The small triangle this vector makes to
the Sun (Fig. 2) has an area
(15)

1
dA = zrdr sin a,

where « is the angle between r and dr (remember
the area of a triangle is ¥2 absin C). This can be use-
fully written as a (pseudo)vector perpendicular to the
plane of the triangle with magnitude dA using the
vector cross-product:

dA = %r x dr. (16)

The rate of sweeping out area due to movement is

therefore

dA 1
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Kepler’s second law states that this is a constant for
the orbital motion, so A should be zero if K11 holds.
Differentiating with respect to time again gives
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The first term on the right-hand side certainly equals
zero, as it is the cross-product of a vector with itself,
but the second term is not zero for general motion.
However, # is just the acceleration of the planet, and
by Newton’s second law that is in the direction of the
applied (gravitational) force, so is also directed along
r. Therefore the second term must also be zero in
this case. We can therefore say that A = 0 and so
A is a constant. It’s clear this would be true for any
‘central force’, where the force is directed along the
line connecting the centres of mass.

KEPLER’S THIRD LAW

Now for Kiit: The square of the orbital period of a
planet is proportional to the cube of the semi-major
axis of its orbit. We’ll use some of the results from
the lectures for this one.

The total area of an ellipse of semimajor and
semiminor axes a and b is

Ay = mab = ma®V1 —e2, (19)

where e is again the eccentricity (we derived b =

aV1 — e? in the lectures using the ‘string’ definition
of an ellipse). From Eqn. (17), the rate of sweeping
out area is
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where L is the planet’s orbital angular momentum
around the Sun and m is its mass. The orbital period

T is simply the time taken to sweep out an area A,

A= (20)
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Figure 3: Relating r, to a and e.

We are nearly there, but we need to address the L
and e terms in this expression. Using Fig. 3, and that
d + 1y = 2a for an ellipse, we have (by Pythagoras)

(2a —ry)? = 4a®e + i} (23)
i = a(l —e?). (24)
Inserting r, from Eqn. (9) we get
2
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We can therefore write Eqn. (22) as
4m?
2_ O 3
T = o, (26)

which is K111. As a bonus we get the constant of pro-
portionality.
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