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3 Section III:The expanding Universe

3.1 The Hubble expansion

In Section II we introducedHubble’s law. It says that, based
on observational evidence, the recession velocity of a galaxy is
proportional to its distance from us. The standard interpretation
of Hubble’s law is that the Universe isexpanding, carrying distant
galaxies away from us. A uniform expansion would indeed result
in all objects receding from each other at a rate proportional to
their separation, like ants on a stretching rubber rope. Therefore,
Hubble’s constant measures theexpansion rateof the Universe.
Recent determinations of the Hubble constant,H0, suggest that it
has a value of about

3.2 Measuring H0

In the 1920s and 1930s when Edwin Hubble measured the redshifts
and distances to nearby galaxies, he estimatedH0 from the gradient
of the best-fit straight line drawn through a plot of recession
velocity against distance (see Fig. 9). This gives a more reliable
estimate ofH0 than simply dividing velocity by distance for a
single galaxy. From Hubble’s original data he estimated a value
of H0 ' 500 km s−1 Mpc−1. In the light of current measurements
this was a gross over-estimate. There were a number of reasons
for this:

• He only measured velocities out to about 1 000 km s−1. Within
this distance peculiar velocities are dominant and he wasnot
measuring the true cosmological expansion velocity.

• He grossly underestimated the distances to his calibrating
galaxies, partly due to using the wrong absolute magnitude
for Cepheid variables, making the wrong correction for ex-
tinction, and (even worse!) misclassifying as Cepheids ob-
jects which were not Cepheids at all.

Over the course of the next 50 years or so, many of these problems
were resolved, but by the 1980s there was still much disagreement
over the value ofH0. In particular, one camp argued for a value
close to 50 km s−1 Mpc−1 and another camp argued for a value
close to 100 km s−1 Mpc−1. It was (and still is, in many contexts)
common to writeH0 = 100h km s−1 Mpc−1, so that uncertainty
over the value ofH0 could be recast as uncertainty over the value
of the dimensionless numberh. Therefore, the disagreement was
between those who favouredh ' 0.5 and those who favoured
h ' 1.0. Much of this disagreement involved disputes over the
distance to the Virgo galaxy cluster.
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Figure 9: Hubble’s original data. (Note that the slope Hubble
measured was' 500 km s−1 Mpc−1).

3.3 The cosmological distance ladder

To determineH0 we need to combine primary and secondary dis-
tance indicators, because

• H0 estimates requireboth accurate distances and recession
velocities,

• primary distance indicators only extend out to about 20 Mpc
(and before HST they extended only to about 4 Mpc from
ground based observations),

• for d ' 20 Mpc, the observed radial velocities of galaxies
are still seriously affected by peculiar motions, so thatvrec 6=

H0d,

• we require secondary distance indicators to extend from
∼ 20 Mpc to≥ 100 Mpc, where Hubble’s law holds more
accurately, so thatvrec = H0d.

We call this combination of two or more primary and secondary
distance steps thecosmological distance ladder.
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3.4 Examples of secondary distance indicators

3.4.1 Type Ia supernovae

A type Ia Supernova (SNIa) is believed to occur when a white dwarf
star (see A1 stellar astrophysics) has accreted sufficient matter
from a binary companion to push itself over the Chandrasekhar
mass limit, causing athermonuclear explosion.

A SNIa brightens by many magnitudes over a few days. Atmaxi-
mum light , they are almost as luminous as an entire galaxy, and the
supernova then fades over several months. By plotting the SNIa’s
light curve we can determine the apparent magnitude at maximum
light. For some time SNIas have been known to be good standard
candles, because theirHubble diagram is linear, at least out to
distances of a few hundred Mpc. The Hubble diagram of a SNIa
is a plot of the maximum apparent magnitude,mmax, versus the
log of the recession velocity. Neglecting extinction and peculiar
motions, this should be linear for a nearby standard candle because

mmax = Mmax + 5 log10 d + 25

= Mmax + 5 log10

(
vrec

H0

)
+ 25

= 5 log10vrec + Mmax − 5 log10 H0 + 25. (19)

If Mmax is constant thenMmax − 5 log10 H0 + 25 is constant, so
that the SNIa will lie along a straight line in the Hubble diagram.
By measuringMmax independently (e.g., by determining Cepheid
distances to some SNIa host galaxies) we can go on to estimate
H0 from more distant SN1as.

3.4.2 The Tully-Fisher relation

The Tully-Fisher relation is a linear relationship between the abso-
lute magnitude and the log of rotation velocity of spiral galaxies.
The rotation velocity is usually the velocity in the flat part of the
rotation curve (recall Fig. 1), often measured from the width of the
HI 21 cm line.

The Tully-Fisher relation is a secondary distance indicator, because
it requires to be calibrated using a set of nearby galaxies, usually
in clusters, whose distance (and therefore absolute magnitude) has
been determined using primary distance indicators. Unfortunately,
there are not enough suitable spiral galaxies in the Local Group to
calibrate Tully-Fisher usingonly Local Group galaxies.

An equivalent relation for elliptical galaxies exists between the in-
trinsic diameter of the galaxy and the range in velocity of its central
stars. Note that elliptical galaxies do not rotate. Instead, their stars
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have random motions, and the larger the galaxy the larger the ran-
dom motions. We call this relation theDn-σ relation. Calibrating
the Dn-σ relation (and several other secondary indicators which
use elliptical galaxies) is problematic because there are no suit-
able large elliptical galaxies within the Local Group. We need to
extend our distance ladder at least to the Virgo Cluster, the core of
which contains many suitable ellipticals, to calibrate them.

3.5 The distance ladder after HST

Before the launch of the Hubble Space Telescope, Cepheids could
be observed only within the Local Group. This was still inadequate
to calibrate all secondary distance indicators, and therefore make
the jump to distances where Hubble’s law is valid. Reasons for
this include:

• the lack of elliptical galaxies in the Local Group to calibrate
elliptical based methods,

• the lack of Local Group spirals, suitable to calibrate the
Tully-Fisher relation,

• the lack of Local Group SNIa hosts, suitable to calibrate the
Hubble diagram.

After the launch of HST, Cepheids became directly observable
within nearby clusters. This allowed thedirect calibration of sec-
ondary distance indicators, including Tully-Fisher and those in-
volving ellipticals or SNIa host galaxies, and provided a link to
more distant clusters, such as the Coma cluster, where Hubble’s
law could be assumed to hold to within a few percent.

HST Cepheid observations therefore allowed the cosmic distance
ladder toH0 to be cut to just two steps. This has greatly improved
the accuracy ofH0 estimates, has resolved the disputes over the
distance to the Virgo cluster and has largely settled the question
whetherH0 lies close to 50 or 100. The answer is thatneither
value is correct! A value between 60 and 80 kms−1 Mpc−1 is
now almost universally accepted and new microwave background
evidence (see later) has lead many cosmologists to favour a value
of about 70 km s−1 Mpc−1.

A sketch illustrating the cosmological distance ladder, and in par-
ticular showing how HST Cepheids have linked the Magellanic
Clouds directly to SNIa host galaxies and the Virgo and Leo clus-
ters, is shown in Fig. 10. The properties of different primary and
secondary distance indicators were summarised in Section II.
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Figure 10: A schematic of the cosmological distance ladder.

3.6 The basis of cosmological models

3.6.1 Olbers’s Paradox

Before we investigate the details of modern Big-Bang models,
it is useful to consider what deductions we can make about the
Universeh from much more elementary observations: specifically
what can one deduce about the Universe from the simple fact that
the night sky is dark?

Heinrich Olbers (1758-1840) posed the question “why is the sky
dark at night?”. He realised that a dark night sky is paradoxicalif
(as many philosophers of the time believed) the Universe is infi-
nite in extent and eternal, with stars roughly uniformly distributed
throughout space. This is because, in an infinite and eternal uni-
verse, eventuallyeveryline of sight will intercept a star, so that
the whole night sky should be as bright as the surface of a star.
This puzzle is known today asOlbers’s Paradox. Another way

hWe will talk about the Universe, but models of different universes.
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of looking at it is that if each star has some finite volume of space
allocated to it, and all of space is allocated in this way, then the
volumes will fill up with light over time.

Olbers’s Paradox is easily resolved. We now know that

1. stars have finite lifetimes, and can’t fill their portion of space
with light forever,

2. the speed of light is finite, so only stars within a finite dis-
tance can be observed, i.e., only those born long enough ago
to allow time for their light to reach us,

3. above all, the Universe almost certainly has afinite age.

Olbers’s Paradox is still of interest today because it reminds us
that even apparently simple questions can lead to profound in-
sights. Note also that only point (3) above uses any property of the
Universe as a whole (anycosmologicalproperty). Therefore, just
using what we know about the properties of stars and the speed of
light, we can say something about the nature of the Universe itself
(it can’t be infinite and eternal without introducing some way to
replenish the matter turned into energy by stars). Point (3) is at
the heart of modern Big-Bang models.

3.6.2 The Cosmological Principle

The standard model for the origin and evolution of the Universe
is called theHot Big Bang model. This says that the Universe
began sometime between 10 and 20 billion years ago and has been
expanding ever since.i Although the Universe is evolving over
time, it is assumed in the Big Bang model that at any timet the
Universe ishomogeneousandisotropic:

Universe homogeneous=

Universe isotropic=

We call these two assumptions theCosmological Principle. Clearly
the Cosmological Principle is not valid on small scales, since
we have seen that galaxies are clustered, but it is assumed to
hold on sufficiently large scales, that is on scaleslarger than∼

10 000 km s−1 , the characteristic size of the largest observed struc-
ture in galaxy redshift surveys. (We will see in Section IV that

iExpanding into what? Remember that the wordexpansionhere means an
increasing separation between galaxies over time. That’s true for all galaxies,
no matter where they are. This isn’t an idea that needs some empty space
to expand into, as there is no space that does not contain galaxies. Rather it
demands extra space be createdbetweengalaxies.
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good evidence for the validity of the Cosmological Principle also
comes from the smoothness of the cosmic microwave background
radiation).

3.6.3 The expansion of the Universe

We can think of galaxies and clusters that we observe in the Uni-
verse as embedded within, and expanding with, theunderlying
structure of the Universe. Fig. 11 shows how this underlying
structure expands over time. Note that the sizes of galaxies them-
selves don’t change, only the distances between them. This un-
derlying structure is usually assumed to satisfy the Cosmological
Principle onall scales, so galaxies can be thought of as local dis-
turbances in an otherwise perfectly homogeneous and isotropic
Universe. The evolution of the Universe can then be described by

Figure 11: Cartoon picture of universal expansion. Note that both
the axes and tick-marks grow, but the galaxies do not.

the size of a dimensionless number which we call thecosmic scale
factor, and is usually writtenR(t). The scale factor measures the
characteristic size of the Universe at timet . More specifically, it
allows one to determine by how far galaxies (embedded in the ho-
mogeneous and isotropic underlying structure) have been carried
apart by the expansion of the underlying space.

We express this idea mathematically by introducing theproper
distance between two galaxies at timet , which is their actual
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separation (measured in Mpc perhaps) and theirco-moving sepa-
ration , which is their separation expressed in terms of a coordinate
system which expands along with the background space. Their co-
moving separation is not changed by the expansion of the Universe.
The proper distance,r (t), between two galaxies with co-moving
separations is

r (t) = R(t) × s. (20)

To repeat, the co-moving separation of galaxies is constant in time.
As a useful example of co-moving coordinates think of latitude and
longitude on the surface of a spherical balloon. The latitude and
longitude of a point on the surface does not change as the balloon
is inflated. The proper distance between galaxies, on the other
hand, continually changes as the scale factor,R(t), changes.

3.6.4 Cosmological redshift

We denote the present day value of the scale factor byR0, and
express other values ofR in units of R0. We can giveanother
interpretation of the redshift of light from a distant object in
terms of the amount by which the Universe has expanded since
the light from the object was emitted. The wavelength of light
emitted by a distant object will be ‘stretched’ by the expansion of
the Universe. If light from a distant object was emitted at time
t , when the scale factor wasR(t), and is observed at timet0 (the
present day), when the scale factor isR0, then

λobs

λemit
=

R0

R(t)
, (21)

i.e., 1+ z =
R0

R(t)
(22)

where z is the apparent redshift defined in Eq. (7). Although
the cosmological redshift takes the same mathematical form as
the familiar Doppler formula, strictly it isnot the same effect.
Cosmological redshifts are not due to themotionsof distant
objects but are the result of the stretching of the wavelength
of their light as it propagates through expanding space. We
still use much of the vocabulary of motion though, so we talk
about galaxies having recession velocities, but the cause of that
recession is not the motions of the stars within a static fabric of
space, but rather the stretching of the fabric itself (in which they
are embedded).
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3.6.5 Hubble’s law and the Cosmological Principle

Consider a galaxy at proper distancer from us. Itsproper velocity,
v, is the rate of change of its proper distance, i.e.,

v =
dr

dt
=

d

dt
(Rs) = Ṙ · s =

Ṙ

R
× (Rs) =

Ṙ

R
r. (23)

This is just Hubble’s law. In a homogeneously and isotropically
expanding universe (that is, one obeying the Cosmological Princi-
pal), an observer inanygalaxy would observe neighbouring galax-
ies to obey Hubble’s law and have a proper velocities proportional
to their proper distances.

Hubble’s constant therefore measures the rate of change of the
scale factor,R(t). We see that Hubble’s constant is not in fact a
constant in time, but is a constant in space at any given time, (since
R(t) is independent of position). So in fact

H(t) =
Ṙ

R
, (24)

and the present day value of the Hubble constant is

H0 =
Ṙ0

R0
. (25)

3.6.6 When was the Big Bang?

We define the Big Bang by the condition thatR(t) → 0 at timet =

0, so that it is the time in the past when the proper distance between
galaxies tended to zero. (Clearly this is a simplistic treatment since,
as we will see in Section IV, in the very early Universe there were
no galaxies!)

We can estimate the time elapsed since the Big Bang by the fol-
lowing simple argument. If we assume a constant expansion rate,
so thatH(t) = H0 for all t , then

v = H0r =
distance

time
=

r

t
. (26)

If we denote the age of the Universe byτ , then it follows from
Equation (26) that

τ = H−1
0 , (27)

or, expressingH0 in km s−1 Mpc −1 andτ in years,

τ = (28)
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We callτ theHubble time, and it sets a timescale for the expansion
of the Universe. This simple treatment ignores the effect of gravity
however, which will slow down the expansion so thatH(t) was
larger in the past. Therefore, including the effects of gravity should
give an age of the Universe which is smaller than the Hubble time,
so that

t0 < τ. (29)

A more precise determination of the age of the Universe requires
solving for R(t) incorporating the effects of gravity (and possibly
also the Cosmological Constant – see later). A rigorous treatment
of this requires Einstein’sGeneral Theory of Relativity (GR),
and lies well beyond the scope of this course, but we can semi-
derive an equation for the evolution ofR(t) using onlyNewtonian
concepts. We call this Friedmann’s Equation.

3.7 Friedmann’s Equation: a simple derivation

Consider a galaxy of massm, a proper distancer from the centre
of a sphere containing many other galaxies. The galaxy is gravi-
tationally attracted by the other galaxies within a sphere and this
force is equivalent to that from a point mass at the centre, equal to
the mass of the sphere. Let the mass of the sphere beM , and the
(uniform) density of the sphere beρ. Then

M =
4

3
πr 3ρ. (30)

Thekinetic energy of the galaxy is given by

KE =
1

2
mṙ 2

=
1

2
mṘ2s2 (31)

and thepotential energy is given by

PE= −
GMm

r
= −

4

3
π R2s2Gρm. (32)

Since the total energy of the galaxy is constant, we have

total energy=
1

2
ms2

[
Ṙ2

−
8πGρR2

3

]
= constant, (33)

or equivalently
Ṙ2

R2
−

8πGρ

3
= −

k

R2
, (34)

wherek is a constant. Equation (34) is calledFriedmann’s equa-
tion, and describes how gravity slows the rate of expansion of the
Universe. We have derived it for a simple Newtonian universe,
consisting of a sphere of matter, but a proper relativistic treatment
gives the same result.
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3.8 The Cosmological Constant: Einstein’s greatest blunder?

In fact a rigorous General Relativistic treatment yields a second
equation for the evolution of the scale factor,R(t), which is

R̈

R
= −4πG

(
ρ +

3P

c2

)
, (35)

wherec is the speed of light andP is the mean pressure of the
Universe.j (Note that you will not be required to know Eq. (35)
for the A1Y exam). Einstein realised an important consequence of
Eq. (35): for normal matter (for whichρ andP ≥ 0) one cannot
have a static universe as that would requireR̈ = 0. This was a big
problem since, when Einstein was publishing GR, the prevailing
belief was that the Universewasstatic.

Einstein fixed this problem by introducing an extra constant,3

(‘lambda’), into Eq. (34) and Eq. (35). This is known as the
Cosmological Constantand we can think of it as an integra-
tion constant in the equations of General Relativity. Eq. (34) and
Eq. (35) are the special case where3 = 0. By choosing the ap-
propriate value for3, Einstein could obtain a static solution with
R(t) = constant. Of course, Hubble’s discovery of the expand-
ing Universe did away with the need for a non-zero Cosmological
Constant, and Einstein supposedly later described it as his “great-
est blunder”.

For many decades cosmologists generally assumed that3 = 0,
partly because it simplified the solution of Friedmann’s Equation
and partly because it avoided the difficult physical problem of
explaining what the cosmological constant actuallyis. A positive
value of3 behaves rather like ‘anti-gravity’: a repulsive force
which overcomes the attraction of gravity on very large scales.

Since the late 1990s a mounting body of evidence (from Type Ia
supernovae, the cosmic microwave background radiation and the
pattern of galaxy clustering in the Universe – see later) suggests
that we do indeed live in a Universe with3 > 0. We discuss some
implications of this startling result later in this section. It remains
for physicists and cosmologists to explain more fully what3 is.
The most popular idea is that its origin lies in the so-called ‘zero
point energy’ of the vacuum of empty space. This idea is now
spawning even more exotic3 theories such as ‘dark energy’ or
‘quintessence’. This is a very exciting new field in cosmology but
further discussion of it lies well beyond the scope of this course.
Some popular books and weblinks are listed on the website.

We now return to Friedmann’s Equation in the form of Eq. (34).
To keep things simple we will only consider the case of3 = 0,

j In General Relativity the pressure of a gas contributes to its gravity, in
addition to the mass of the atoms in the gas.
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although we should keep in mind that the current cosmological
data suggests that in fact3 > 0.

3.9 The curvature of the Universe

The constant,k, in Eq. (34) defines the geometry, orcurvature, of
the Universe. We can defineR so thatk has three possible values:

k = 1 implies

k = −1 implies

k = 0 implies

We can visualise the curvature of the Universe by analogy with
the curvature of a 2-D surface, as illustrated in Fig. 12. Changing
the curvature of a surface affects the behaviour of initially parallel
lines drawn on it. In the Universe, these ‘lines’ can be thought of
as light rays: changing the curvature of the Universe distorts these
paths and affects the apparent size and brightness of distant objects
(this is how distant Type Ia supernovae can be used to measure the
curvature of the Universe).

Figure 12: 2-D representation of surfaces of different curvature.

If 3 = 0 thenk also determines the long-term behaviour of the
scale factor:

k = 1 implies KE< PE; Universebounded: it expands, then recollapses,

k = −1 implies KE> PE; Universeunbounded: it expands, indefinitely,

k = 0 implies KE= PE; Universejust unbounded: it slows to Ṙ = 0 asR → ∞.

(The relation between curvature and boundedness is more compli-
cated if3 6= 0, but that need not concern us in this course).



Astronomy 1Y: Introduction to Cosmology 34

3.10 Solution of Friedmann’s equation for a flat universe with 3 = 0

The analytic solution of Friedmann’s equation is straightforward
only for the the case of a flat universe (k = 0), so that(

dR

dt

)2

=
8πGρR2

3
. (36)

If we assume the Universe ismatter dominated, and mass is
conserved, then mass (density× volume)∝ ρR3 is constant, so(

d R

dt

)2

=
A

R
, (37)

whereA is a constant. It is easy to show thatR(t) = at2/3 is a
solution to this equation, wherea is another constant. Ift0 is the
present age of the Universe, then

R

R0
=

(
t

t0

)2/3

. (38)

Equations (22) and (38) give a relation between redshift and time:

1 + z =

(
t

t0

)−2/3

, (39)

so that if we observe a quasar at redshiftz = 3, its light was emitted
when the Universe was one eighth of its present age.

For R(t) = at2/3, differentiating and dividing byR we obtain

Ṙ

R
=

2

3
t−1, (40)

i.e.,

t0 =
2

3
H−1

0 . (41)

Comparing with theHubble time, we see thatt0 = (2/3)τ . If
H0 is expressed in km s−1 Mpc −1, andτ in years, the age of the
Universe (fork = 0) is

t0 = (42)

Therefore, forH0 = 70 km s−1 Mpc −1, t0 ' 9 × 109 yr. This is
an uncomfortably low age, compared with the estimated ages of
Globular Clusters. By considering themain sequence turn-offon
the colour-magnitude diagram of globular clustersk, astronomers

kSee A1 Stellar astrophysics course for details about colour-magnitude di-
agrams and the Main Sequence.
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have recently estimated the age of the oldest globular clusters to
be around 11 Gyr. There are many possible sources of uncertainty
in these calculations, but most astronomers would accept that the
ages of globular clusters cannot be ‘squeezed’ much lower than
10 Gyr, and of course one has to allow a little time between the Big
Bang and the formation of the globular cluster. This ‘age paradox’
is now seen as less problematic, since models with a positive3

now appear to be supported by cosmological data. The effect of
3 > 0 is to increase the age of the Universe, for a given value of
H0.

3.11 The critical density of the Universe

As stated in Eq. 36, whenk = 0, Eq. (34) reduces to(
Ṙ

R

)2

=
8πGρ

3
, (43)

or

ρ =
3H2

8πG
. (44)

We call this value ofρ, thecritical density, and denote it byρcrit.
Its present day value is

ρcrit =
3H2

0

8πG
. (45)

ρcrit is the density required to just close the Universe. Ifρ > ρcrit

the universe recollapses, but ifρ < ρcrit, the Universe expands
indefinitely. The present day value ofρcrit is equivalent to approx-
imately 5 hydrogen atoms per cubic metre.

Cosmologists often use the dimensionlessdensity parameter,
�(t), where

�(t) =
ρ(t)

ρcrit(t)
. (46)

Therefore

� > 1 implies

� < 1 implies

� = 1 implies

Cosmologists denote the present-day value of� by �0. Although
� can change with time, it can be shown that its state of being
closed, open or flat cannot change.

Fig. 13 sketches the solution of Friedmann’s equation forR(t), for
different values of�0. We see thatR(t) shows three distinct types
of behaviour, depending on whether the geometry of the Universe
is open, closed or flat.
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Figure 13: Behaviour of the scale factor in different cosmologies.

3.12 Weighing the Universe: methods for measuring �0

So which universe do we live in? To answer that question we need
to know�0, which depends on the matter density of the Universe,
ρ. We can determine estimates of the matter density in several
different ways:

Visible Stars in the Milky Way If we assume that all stars in the
galaxy are of one solar mass,M�, then we can estimate the
matter density to be

ρ =
Nstars× M�

volume of Milky Way
. (47)

Galaxy rotation curves By measuring the rotation velocity of
clouds of neutral hydrogen gas within the disc of spiral
galaxies as a function of their radial distance from the cen-
tre, we can deduce the amount of mass inside that radius.
Recall from Section I that the observed rotation velocities
aregreaterthan those expected from the gravitational influ-
ence of the luminous stars alone, indicating the presence of
a dark matter halo surrounding the galaxy.

Galaxy clusters By assuming that a galaxy cluster isvirialised,
which means that the cluster has ‘settled down’ into a state of
equilibrium, there should exist a relation between the mass,
M , and radius,r , of the cluster and themean square peculiar
velocity, 〈v2

〉, of the cluster galaxies. We call this relation
thevirial theorem and it arises because in a virialised cluster
the galaxies have reached a state of balance between their
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kinetic energy and potential energy such that 2KE+PE= 0.
Taking KE =

1
2 M〈v2

〉 and PE= −GM2r , a virial mass
estimatefor the cluster is then given by

M =
〈v2

〉r

G
. (48)

Note that〈v2
〉 is the 3-D mean square peculiar velocity, but in

practice we measure only theradial componentof the pecu-
liar velocity (deduced from the galaxy redshift). Assuming
a spherical cluster with anisotropic velocity distribution

〈v2
〉 = 3〈v2

radial〉. (49)

Gravitational lensing The General Theory of Relativity predicts
that light will be deflected in a strong gravitational field:
we call this phenomenongravitational lensing. We can
use lensing to deduce estimates of the matter density in two
ways:

1. Weak lensing: Here light from distant galaxies is dis-
torted by passage through an intervening cluster. The
amount of distortion allows the cluster mass density to
be estimated.

2. Microlensing: Here, light from stars in the LMC and
the bulge of the Milky Way is distorted by dark matter
crossing our line-of-sight, giving a temporary rise in
the brightness of the background stars. The shape of
the microlensed star’s light curve allows one to place
constraints on the mass of the lensing object. Sev-
eral monitoring programs (such as MACHO, EROS
and OGLE) have checked the brightness of millions of
LMC and bulge stars every day for a number of years,
looking for evidence of microlensing. A few hundred
microlensing events have been found.

Hubble diagram of standard candles We have already seen how
one may use the Hubble diagram of a standard candle dis-
tance indicator to estimate the value ofH0. For relatively
nearby objects the relation between apparent magnitude and
log redshift islinear. For more distant objects the relation
begins tocurve, and the amount of curvature indicates the
curvature of the Universe, which depends of the value of
the matter density (�) and the cosmological constant (3).
The values of these parameters in turn indicate whether the
expansion of the Universe isacceleratingor decelerating.

For many years cosmologists have tried to estimate the cur-
vature using the magnitude-redshift relation for quasars or
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distant galaxy clusters. However, neither of these objects
make good standard candles at very large redshift, however,
sinceevolutionary effectsbecome important: atz ∼ 1, we
are looking back to sufficiently early times that the luminos-
ity and number density of galaxy clusters and quasars has
changed significantly compared with their present day val-
ues. It is very difficult to correct for these effects, which one
mustdo first before estimating the curvature of the Hubble
diagram.

Recently the Hubble diagram of type Ia supernovae, instead
of quasars or galaxy clusters, has been used to estimate the
matter density and cosmological constant,3. The conclu-
sion of these studies is that3 > 0, showing the expansion of
the Universe isaccelerating(i.e., the Universe is expand-
ing faster now than it was in the past). This also means
that the Universe will continue to expand indefinitely and
there will be no re-collapse to a ‘Big Crunch’. This startling
conclusion is also supported by analysis of galaxy cluster-
ing and the cosmic microwave background radiation (see
Section IV).

Large-scale streaming motionsBy analysing the galaxy redshift
surveys, we can determine the peculiar velocities of large
numbers of galaxies, and we find that often galaxies appear
to be moving coherently on scales of up to about 100 Mpc.
The usual interpretation of these motions is that the galaxies
are responding to the gravitational pull of the surrounding
matter distribution. Note that they will experience the grav-
itational pull not just of the luminous matter, but also of
the dark matter around them. By studying the patterns of
galaxy peculiar velocitieswe can estimate�0.

We can also place limits on the matter density by considering the
relative amounts of the lightest elements, which we believe were
manufactured during the first few minutes after the Big Bang.
We call this processnucleosynthesis; we give the limits on�0

from nucleosynthesis below, but leave further discussion until Sec-
tion IV.
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So in summary:

method limits

nucleosynthesis 0.015≤ �Bh2
≤ 0.026

visible stars �B '

galaxy rotation curves �0 '

galaxy clusters �0 '

large scale motions �0 ≥

gravitational lensing �0 ≥

3.13 Evidence for the existence and nature of dark matter

Note that the first two methods listed above measure the density of
baryonic matter. Bayronic matter is matter made up of neutrons,
protons (and electrons) – the normal matter we might perhaps think
the whole universe is made of. The remaining methods measure
the gravitational effect ofall matter – whether baryonic or non-
baryonic. Here we have again writtenH0 = 100h km s−1 Mpc−1.

Estimates of�0 from visible stars are a factor of about 100 smaller
than estimates from galaxy clusters, large scale motions and gravi-
tational lensing.This provides conclusive evidence for the exis-
tence of dark matter. Dark matter is simply matter that cannot be
seen through telescopes, and it can be baryonic or non-baryonic.

Since the values of�0 from galaxy clusters are a factor of∼

10 greater than from galaxy rotation curves, it seems that dark
matter is not only in galaxy halos, but alsobetweengalaxies. X-
ray observations indicate a smooth distribution of intra-cluster gas
in galaxy clusters. Cluster gas is baryonic however, while the
constraints on�B from nucleosynthesis indicate that a substantial
fraction of the dark matter in the Universe isnon-baryonic.

The limits on�Bh2 are deduced from the dependence of reaction
rates on density and temperature in the early Universe. Ifh = 0.65,
then

(50)

These limits are compatible with�0 from galaxy rotation curves,
but fall well short of the limits on�0 from larger scales. Therefore,
if H0 ' 65 km s−1 Mpc−1, this implies that some of the dark matter
is baryonic. Moreover, if�0 = 1, H0 = 65 kms−1 Mpc−1, then
> 90% of dark matter would be non-baryonic.
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3.14 Dark matter candidates

Baryonic

• Gas clumps in galaxy halos and clusters.

• MACHOs : Massive compact halo objects, such as ‘Brown
dwarfs’ (failed stars), ‘Jupiters’ (cold planet-like objects)
and undetected white dwarfs (now unlikely, after HST).

• Low surface brightness galaxies .

Non-Baryonic

• WIMPs: Weakly interacting massive particles, such as mas-
sive neutrinos, exotic particles (axions, photinos, magnetic
monopoles, …) and primordial black holes.

Note that if primordial black holes form before nucleosynthesis
and they don’t affect the limits on�B, so they are effectively non-
baryonic.

3.15 Hot or cold dark matter?

Non-baryonic dark matter interacts weakly with baryons and pho-
tonsnow, but interacted more strongly (i.e., was more strongly
coupled to them) in the early Universe, which was hotter and
denser. If non-baryonic dark matter was movingrelativistically
(v ' c) at the time of decoupling from baryonic matter, we call
it hot. Examples include neutrinos and photinos. If non-baryonic
dark matter was movingnon-relativistically (v � c) at decou-
pling, we call itcold. Examples include axions and monopoles.


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	




